IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v19y1994i10p1077-1081.html
   My bibliography  Save this article

Solar combined thermochemical processes for CO2 mitigation in the iron, cement, and syngas industries

Author

Listed:
  • Steinfeld, A.
  • Thompson, G.

Abstract

A thermodynamic analysis and related experimental studies indicate the technical feasibility of reducing CO2 emissions via combined processes based on the co-production of synthesis gas (CO + H2) with iron or cement. These combined processes involve the reforming of methane to trap CO2 inherent in the carbothermic reduction of iron oxide and in the thermal decomposition of calcium carbonate. Replacing fossil fuels with solar energy as the source of process heat further reduces CO2 emission to zero and offers the technical possibility of reducing total global anthropogenic CO2 emissions by about 10%.

Suggested Citation

  • Steinfeld, A. & Thompson, G., 1994. "Solar combined thermochemical processes for CO2 mitigation in the iron, cement, and syngas industries," Energy, Elsevier, vol. 19(10), pages 1077-1081.
  • Handle: RePEc:eee:energy:v:19:y:1994:i:10:p:1077-1081
    DOI: 10.1016/0360-5442(94)90096-5
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0360544294900965
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0360-5442(94)90096-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Halmann, M. & Steinfeld, A., 2006. "Fuel saving, carbon dioxide emission avoidance, and syngas production by tri-reforming of flue gases from coal- and gas-fired power stations, and by the carbothermic reduction of iron oxide," Energy, Elsevier, vol. 31(15), pages 3171-3185.
    2. Yadav, Deepak & Banerjee, Rangan, 2016. "A review of solar thermochemical processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 497-532.
    3. Koepf, E. & Alxneit, I. & Wieckert, C. & Meier, A., 2017. "A review of high temperature solar driven reactor technology: 25years of experience in research and development at the Paul Scherrer Institute," Applied Energy, Elsevier, vol. 188(C), pages 620-651.
    4. Halmann, M. & Frei, A. & Steinfeld, A., 2007. "Carbothermal reduction of alumina: Thermochemical equilibrium calculations and experimental investigation," Energy, Elsevier, vol. 32(12), pages 2420-2427.
    5. Nikulshina, V. & Hirsch, D. & Mazzotti, M. & Steinfeld, A., 2006. "CO2 capture from air and co-production of H2 via the Ca(OH)2–CaCO3 cycle using concentrated solar power–Thermodynamic analysis," Energy, Elsevier, vol. 31(12), pages 1715-1725.
    6. Halmann, M. & Steinfeld, A., 2006. "Production of lime, hydrogen, and methanol by the thermo-neutral combined calcination of limestone with partial oxidation of natural gas or coal," Energy, Elsevier, vol. 31(10), pages 1533-1541.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:19:y:1994:i:10:p:1077-1081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.