IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v28y2003i1p55-97.html
   My bibliography  Save this article

The theory and practice of energy saving in the chemical industry: some methods for reducing thermodynamic irreversibility in chemical technology processes

Author

Listed:
  • Leites, I.L.
  • Sama, D.A.
  • Lior, N.

Abstract

The causes of thermodynamic irreversibility in chemical reactions and other industrial chemical processes (in particular absorption, stripping, and heat transfer) and ways of reducing energy consumption have been examined. Some thermodynamic principles based on the Second Law of thermodynamics such as the so called “counteraction principle,” “driving force method,” “quasi-static method,” and the result some of practical methods for energy saving design are discussed. It is demonstrated that the possibilities for reducing energy consumption are substantially higher than often seems possible. The correctness and practical effectiveness of the above methods have been confirmed by many commercial examples, for instance the lead author was able to reduce heat consumption in more than 20 commercial CO2 removal installations by changes in networks only, without changing the absorbent. The heat consumption was reduced to about 1/2 to 1/3 of that used with conventional flow sheets.

Suggested Citation

  • Leites, I.L. & Sama, D.A. & Lior, N., 2003. "The theory and practice of energy saving in the chemical industry: some methods for reducing thermodynamic irreversibility in chemical technology processes," Energy, Elsevier, vol. 28(1), pages 55-97.
  • Handle: RePEc:eee:energy:v:28:y:2003:i:1:p:55-97
    DOI: 10.1016/S0360-5442(02)00107-X
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054420200107X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0360-5442(02)00107-X?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kestin, Joseph, 1980. "Availability: The concept and associated terminology," Energy, Elsevier, vol. 5(8), pages 679-692.
    2. Szargut, Jan, 1980. "International progress in second law analysis," Energy, Elsevier, vol. 5(8), pages 709-718.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rosen, Marc A. & Dincer, Ibrahim & Kanoglu, Mehmet, 2008. "Role of exergy in increasing efficiency and sustainability and reducing environmental impact," Energy Policy, Elsevier, vol. 36(1), pages 128-137, January.
    2. Rosen, Marc A., 2002. "Assessing energy technologies and environmental impacts with the principles of thermodynamics," Applied Energy, Elsevier, vol. 72(1), pages 427-441, May.
    3. Bejan, Adrian, 2018. "Thermodynamics today," Energy, Elsevier, vol. 160(C), pages 1208-1219.
    4. Silveira, Jose Luz & Lamas, Wendell de Queiroz & Tuna, Celso Eduardo & Villela, Iraides Aparecida de Castro & Miro, Laura Siso, 2012. "Ecological efficiency and thermoeconomic analysis of a cogeneration system at a hospital," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2894-2906.
    5. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    6. Hepbasli, Arif & Utlu, Zafer & Akdeniz, R. Cengiz, 2007. "Energetic and exergetic aspects of cotton stalk production in establishing energy policies," Energy Policy, Elsevier, vol. 35(5), pages 3015-3024, May.
    7. Rocco, M.V. & Colombo, E. & Sciubba, E., 2014. "Advances in exergy analysis: a novel assessment of the Extended Exergy Accounting method," Applied Energy, Elsevier, vol. 113(C), pages 1405-1420.
    8. Paula Marlene Wenzel & Peter Radgen & Jan Westermeyer, 2021. "Comparing Exergy Analysis and Physical Optimum Method Regarding an Induction Furnace," Energies, MDPI, vol. 14(6), pages 1-18, March.
    9. An, Qier & An, Haizhong & Wang, Lang & Huang, Xuan, 2014. "Structural and regional variations of natural resource production in China based on exergy," Energy, Elsevier, vol. 74(C), pages 67-77.
    10. Macmanus Chinenye Ndukwu & Lyes Bennamoun & Merlin Simo-Tagne, 2021. "Reviewing the Exergy Analysis of Solar Thermal Systems Integrated with Phase Change Materials," Energies, MDPI, vol. 14(3), pages 1-26, January.
    11. Efstathios E. Michaelides, 2021. "Thermodynamics, Energy Dissipation, and Figures of Merit of Energy Storage Systems—A Critical Review," Energies, MDPI, vol. 14(19), pages 1-41, September.
    12. Evanthia A. Nanaki & Christopher J. Koroneos, 2017. "Exergetic Aspects of Hydrogen Energy Systems—The Case Study of a Fuel Cell Bus," Sustainability, MDPI, vol. 9(2), pages 1-17, February.
    13. van Donkelaar, Laura H.G. & Mostert, Joost & Zisopoulos, Filippos K. & Boom, Remko M. & van der Goot, Atze-Jan, 2016. "The use of enzymes for beer brewing: Thermodynamic comparison on resource use," Energy, Elsevier, vol. 115(P1), pages 519-527.
    14. Jedrzej Bylka & Tomasz Mróz, 2020. "Exergy Evaluation of a Water Distribution System," Energies, MDPI, vol. 13(23), pages 1-16, November.
    15. Sharshir, S.W. & Elsheikh, A.H. & Peng, Guilong & Yang, Nuo & El-Samadony, M.O.A. & Kabeel, A.E., 2017. "Thermal performance and exergy analysis of solar stills – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 521-544.
    16. Kim, Donghoi & Gundersen, Truls, 2020. "Use of exergy efficiency for the optimization of LNG processes with NGL extraction," Energy, Elsevier, vol. 197(C).
    17. Petar Sabev Varbanov & Hon Huin Chin & Alexandra-Elena Plesu Popescu & Stanislav Boldyryev, 2020. "Thermodynamics-Based Process Sustainability Evaluation," Energies, MDPI, vol. 13(9), pages 1-28, April.
    18. Proenza Pérez, Nestor & Titosse Sadamitsu, Marlene & Luz Silveira, Jose & Santana Antunes, Julio & Eduardo Tuna, Celso & Erazo Valle, Atilio & Faria Silva, Natalia, 2015. "Energetic and exergetic analysis of a new compact trigeneration system run with liquefied petroleum gas," Energy, Elsevier, vol. 90(P2), pages 1411-1419.
    19. Azoumah, Y. & Blin, J. & Daho, T., 2009. "Exergy efficiency applied for the performance optimization of a direct injection compression ignition (CI) engine using biofuels," Renewable Energy, Elsevier, vol. 34(6), pages 1494-1500.
    20. Zhang, Wei & Zhang, Juhua & Xue, Zhengliang, 2017. "Exergy analyses of the oxygen blast furnace with top gas recycling process," Energy, Elsevier, vol. 121(C), pages 135-146.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:28:y:2003:i:1:p:55-97. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.