A novel seesaw-like piezoelectric energy harvester for low frequency vibration
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2022.125241
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Fan, Kangqi & Liu, Shaohua & Liu, Haiyan & Zhu, Yingmin & Wang, Weidong & Zhang, Daxing, 2018. "Scavenging energy from ultra-low frequency mechanical excitations through a bi-directional hybrid energy harvester," Applied Energy, Elsevier, vol. 216(C), pages 8-20.
- Chunhui Gao & Shiqiao Gao & Haipeng Liu & Lei Jin & Junhu Lu, 2017. "Electret Length Optimization of Output Power for Double-End Fixed Beam Out-of-Plane Electret-Based Vibration Energy Harvesters," Energies, MDPI, vol. 10(8), pages 1-15, August.
- Zhang, L.B. & Dai, H.L. & Abdelkefi, A. & Wang, L., 2019. "Experimental investigation of aerodynamic energy harvester with different interference cylinder cross-sections," Energy, Elsevier, vol. 167(C), pages 970-981.
- Zhang, Jinhui & Qin, Lifeng, 2019. "A tunable frequency up-conversion wideband piezoelectric vibration energy harvester for low-frequency variable environment using a novel impact- and rope-driven hybrid mechanism," Applied Energy, Elsevier, vol. 240(C), pages 26-34.
- Yang, Fan & Gao, Mingyuan & Wang, Ping & Zuo, Jianyong & Dai, Jun & Cong, Jianli, 2021. "Efficient piezoelectric harvester for random broadband vibration of rail," Energy, Elsevier, vol. 218(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Lin & Liao, Xin & Sun, Beibei & Zhang, Ning & Wu, Jianwei, 2022. "A numerical-experimental dynamic analysis of high-efficiency and broadband bistable energy harvester with self-decreasing potential barrier effect," Applied Energy, Elsevier, vol. 317(C).
- Zhang, L.B. & Dai, H.L. & Abdelkefi, A. & Lin, S.X. & Wang, L., 2019. "Theoretical modeling, wind tunnel measurements, and realistic environment testing of galloping-based electromagnetic energy harvesters," Applied Energy, Elsevier, vol. 254(C).
- Li, Yi & Zhou, Shengxi & Yang, Zhichun & Guo, Tong & Mei, Xutao, 2019. "High-performance low-frequency bistable vibration energy harvesting plate with tip mass blocks," Energy, Elsevier, vol. 180(C), pages 737-750.
- Xiaobiao Shan & Haigang Tian & Han Cao & Tao Xie, 2020. "Enhancing Performance of a Piezoelectric Energy Harvester System for Concurrent Flutter and Vortex-Induced Vibration," Energies, MDPI, vol. 13(12), pages 1-19, June.
- Gu, Yuhan & Liu, Weiqun & Zhao, Caiyou & Wang, Ping, 2020. "A goblet-like non-linear electromagnetic generator for planar multi-directional vibration energy harvesting," Applied Energy, Elsevier, vol. 266(C).
- Shi, Ge & Tong, Dike & Xia, Yinshui & Jia, Shengyao & Chang, Jian & Li, Qing & Wang, Xiudeng & Xia, Huakang & Ye, Yidie, 2022. "A piezoelectric vibration energy harvester for multi-directional and ultra-low frequency waves with magnetic coupling driven by rotating balls," Applied Energy, Elsevier, vol. 310(C).
- Shi, Ge & Liang, Xing & Xia, Yinshui & Jia, Shengyao & Hu, Xiangzhan & Yuan, Mingzhu & Xia, Huakang & Wang, Binrui, 2024. "A novel dual piezoelectric-electromagnetic energy harvester employing up-conversion technology for the capture of ultra-low-frequency human motion," Applied Energy, Elsevier, vol. 368(C).
- Liu, Mengzhou & Zhang, Yuan & Fu, Hailing & Qin, Yong & Ding, Ao & Yeatman, Eric M., 2023. "A seesaw-inspired bistable energy harvester with adjustable potential wells for self-powered internet of train monitoring," Applied Energy, Elsevier, vol. 337(C).
- Zhou, Xu & Wang, Kangda & Li, Siyu & Wang, Yadong & Sun, Daoyu & Wang, Longlong & He, Zhizhu & Tang, Wei & Liu, Huicong & Jin, Xiaoping & Li, Zhen, 2024. "An ultra-compact lightweight electromagnetic generator enhanced with Halbach magnet array and printed triphase windings," Applied Energy, Elsevier, vol. 353(PA).
- Liu, Weiqun & Qin, Gang & Zhu, Qiao & Hu, Guangdi, 2018. "Synchronous extraction circuit with self-adaptive peak-detection mechanical switches design for piezoelectric energy harvesting," Applied Energy, Elsevier, vol. 230(C), pages 1292-1303.
- Zhang, Tingsheng & Kong, Lingji & Zhu, Zhongyin & Wu, Xiaoping & Li, Hai & Zhang, Zutao & Yan, Jinyue, 2024. "An electromagnetic vibration energy harvesting system based on series coupling input mechanism for freight railroads," Applied Energy, Elsevier, vol. 353(PA).
- Zhao, Lin-Chuan & Zou, Hong-Xiang & Yan, Ge & Liu, Feng-Rui & Tan, Ting & Zhang, Wen-Ming & Peng, Zhi-Ke & Meng, Guang, 2019. "A water-proof magnetically coupled piezoelectric-electromagnetic hybrid wind energy harvester," Applied Energy, Elsevier, vol. 239(C), pages 735-746.
- Dong, Liwei & Zuo, Jianyong & Wang, Tianpeng & Xue, Wenbin & Wang, Ping & Li, Jun & Yang, Fan, 2022. "Enhanced piezoelectric harvester for track vibration based on tunable broadband resonant methodology," Energy, Elsevier, vol. 254(PA).
- Toyabur Rahman, M. & Sohel Rana, SM & Salauddin, Md. & Maharjan, Pukar & Bhatta, Trilochan & Kim, Hyunsik & Cho, Hyunok & Park, Jae Yeong, 2020. "A highly miniaturized freestanding kinetic-impact-based non-resonant hybridized electromagnetic-triboelectric nanogenerator for human induced vibrations harvesting," Applied Energy, Elsevier, vol. 279(C).
- Liu, Qi & Qin, Weiyang & Zhou, Zhiyong & Shang, Mengjie & Zhou, Honglei, 2023. "Harvesting low-speed wind energy by bistable snap-through and amplified inertial force," Energy, Elsevier, vol. 284(C).
- Na, Yonghyeon & Lee, Min-Seon & Lee, Jung Woo & Jeong, Young Hun, 2020. "Wind energy harvesting from a magnetically coupled piezoelectric bimorph cantilever array based on a dynamic magneto-piezo-elastic structure," Applied Energy, Elsevier, vol. 264(C).
- Wang, Zhemin & Du, Yu & Li, Tianrun & Yan, Zhimiao & Tan, Ting, 2021. "A flute-inspired broadband piezoelectric vibration energy harvesting device with mechanical intelligent design," Applied Energy, Elsevier, vol. 303(C).
- Shan, Xiaobiao & Tian, Haigang & Chen, Danpeng & Xie, Tao, 2019. "A curved panel energy harvester for aeroelastic vibration," Applied Energy, Elsevier, vol. 249(C), pages 58-66.
- Wang, Chen & Lai, Siu-Kai & Wang, Jia-Mei & Feng, Jing-Jing & Ni, Yi-Qing, 2021. "An ultra-low-frequency, broadband and multi-stable tri-hybrid energy harvester for enabling the next-generation sustainable power," Applied Energy, Elsevier, vol. 291(C).
- Tan, Qinxue & Fan, Kangqi & Guo, Jiyuan & Wen, Tao & Gao, Libo & Zhou, Shengxi, 2021. "A cantilever-driven rotor for efficient vibration energy harvesting," Energy, Elsevier, vol. 235(C).
More about this item
Keywords
Energy harvester; Low frequency; Rotating motion; Inertia;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:261:y:2022:i:pb:s0360544222021296. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.