IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v312y2024ics0360544224033978.html
   My bibliography  Save this article

Numerical simulation on characteristics and mechanisms of steam-assisted in-situ combustion in extra-heavy oil reservoirs

Author

Listed:
  • Yuan, Shibao
  • Ren, Zihan
  • Yang, Fengxiang
  • Sun, Xinge
  • Jiang, Haiyan
  • Song, Jia
  • Li, Lehong

Abstract

Extra-heavy oil reservoirs, especially post-steam injection, continue to challenge performance of in-situ combustion (ISC), resulting in problems such as poor effect and slow startup. A novel enhanced oil recovery process, steam-assisted in-situ combustion (SAISC), is proposed. Using the Hongqian 1 Block as a case study, the model analyzes and elucidates production performance, combustion characteristics, oil displacement mechanisms, and mutual coupling effects associated with SAISC. Heat relationship analysis confirms feasibility of SAISC, while its applicability hinges on viscosity and the steam-air ratio, with economic limit calculations further demonstrating technique's superiority. The results show that injected steam during the SAISC process absorbs retained heat in the rock of the combustion zone through heat exchange, transforming into superheated steam. Steam condensation is delayed, and the condensation zone is expanded by about 10 m. The water and oil phase velocities in the condensation zone are both increased by 33 %, resulting in a production increase of over 40 %. Steam is more suitable than water as the heat-carrying fluid for SAISC, with a recommended steam-air ratio of approximately 4.0. When the oil price exceeds 60 USD/bbl, developing with SAISC technology yields an economic surplus. This study provides insights into improving the development effect in similar reservoirs.

Suggested Citation

  • Yuan, Shibao & Ren, Zihan & Yang, Fengxiang & Sun, Xinge & Jiang, Haiyan & Song, Jia & Li, Lehong, 2024. "Numerical simulation on characteristics and mechanisms of steam-assisted in-situ combustion in extra-heavy oil reservoirs," Energy, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224033978
    DOI: 10.1016/j.energy.2024.133619
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224033978
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133619?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Xishun & Shi, Junfeng & Zhao, Ruidong & Ma, Gaoqiang & Li, Zhongyang & Wang, Xiaofei & Zhang, Jinke, 2024. "Simulation of wellbore pipe flow in oil production engineering: Offshore concentric double-tube CO2-assisted superheated steam wellbore during SAGD process of heavy oil reservoirs," Energy, Elsevier, vol. 294(C).
    2. Yang, Junyu & Xu, Qianghui & Jiang, Hang & Shi, Lin, 2021. "Reaction model of low asphaltene heavy oil from ramped temperature oxidation experimental analyses and numerical simulations," Energy, Elsevier, vol. 219(C).
    3. Andrey V. Minakov & Victoria D. Meshkova & Dmitry Viktorovich Guzey & Maksim I. Pryazhnikov, 2023. "Recent Advances in the Study of In Situ Combustion for Enhanced Oil Recovery," Energies, MDPI, vol. 16(11), pages 1-26, May.
    4. Dong, Xiaohu & Liu, Huiqing & Chen, Zhangxin & Wu, Keliu & Lu, Ning & Zhang, Qichen, 2019. "Enhanced oil recovery techniques for heavy oil and oilsands reservoirs after steam injection," Applied Energy, Elsevier, vol. 239(C), pages 1190-1211.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying Shi & Hong He & Yu Li & Fei Ding & Zhuo Zhou & Nuolin Xiong, 2023. "High-Temperature-Resistant Epoxy Resin Gel Behavior and Profile Control in Heavy Oil Steam Drive," Energies, MDPI, vol. 17(1), pages 1-14, December.
    2. Yang, Min & Liu, Yishan & Lu, Ning & Chai, Maojie & Wang, Sen & Feng, Qihong & Chen, Zhangxin, 2023. "Integration of ramped temperature oxidation and combustion tube tests for kinetic modeling of heavy oil in-Situ combustion," Energy, Elsevier, vol. 274(C).
    3. Anufriev, I.S. & Kopyev, E.P. & Alekseenko, S.V. & Sharypov, O.V. & Vigriyanov, M.S., 2022. "New ecology safe waste-to-energy technology of liquid fuel combustion with superheated steam," Energy, Elsevier, vol. 250(C).
    4. Camilo Andrés Guerrero-Martin & Angie Tatiana Ortega-Ramírez & Paula Alejandra Perilla Rodríguez & Shalom Jireth Reyes López & Laura Estefanía Guerrero-Martin & Raúl Salinas-Silva & Stefanny Camacho-G, 2023. "Analysis of Environmental Sustainability through a Weighting Matrix in the Oil and Gas Industry," Sustainability, MDPI, vol. 15(11), pages 1-16, June.
    5. Yao, Yue & Sun, Deqiang & Xu, Jin-Hua & Wang, Bin & Peng, Guohong & Sun, Bingmei, 2023. "Evaluation of enhanced oil recovery methods for mature continental heavy oil fields in China based on geology, technology and sustainability criteria," Energy, Elsevier, vol. 278(PB).
    6. Wang, Sen & Qin, Chaoxu & Feng, Qihong & Javadpour, Farzam & Rui, Zhenhua, 2021. "A framework for predicting the production performance of unconventional resources using deep learning," Applied Energy, Elsevier, vol. 295(C).
    7. Chai, Maojie & Nourozieh, Hossein & Chen, Zhangxin & Yang, Min, 2022. "A semi-compositional approach to model asphaltene precipitation and deposition in solvent-based bitumen recovery processes," Applied Energy, Elsevier, vol. 328(C).
    8. Laura Osma & Luis García & Romel Pérez & Carolina Barbosa & Jesús Botett & Jorge Sandoval & Eduardo Manrique, 2019. "Benefit–Cost and Energy Efficiency Index to Support the Screening of Hybrid Cyclic Steam Stimulation Methods," Energies, MDPI, vol. 12(24), pages 1-16, December.
    9. Mateus-Rubiano, Camilo & Castillo, Andrea C. & León, Paola & Rueda, Luis & Molina V, Daniel & Leon, Adan Y., 2024. "Effect of hydrotreatment process on the physicochemical properties of a Colombian heavy crude oil post-catalytic aquathermolysis," Energy, Elsevier, vol. 298(C).
    10. Zhou, Guangzhao & Guo, Zanquan & Sun, Simin & Jin, Qingsheng, 2023. "A CNN-BiGRU-AM neural network for AI applications in shale oil production prediction," Applied Energy, Elsevier, vol. 344(C).
    11. Yu, Peng, 2022. "Posterior probability-based hydraulic unit division and prediction: A case study," Energy, Elsevier, vol. 246(C).
    12. Huang, Lijuan & Wang, Yu & Li, Zongfa & Zhang, Liang & Yin, Yuchuan & Chen, Chao & Ren, Shaoran, 2021. "Experimental study on piloted ignition temperature and auto ignition temperature of heavy oils at high pressure," Energy, Elsevier, vol. 229(C).
    13. Wei, Cao & Nawaz, Ayesha & Nath, Devjyoti & Zirrahi, Mohsen & Hassanzadeh, Hassan, 2022. "Subsurface waste heat recovery from the abandoned steam assisted gravity drainage (SAGD) operations," Energy, Elsevier, vol. 256(C).
    14. Yong Huang & Wulin Xiao & Sen Chen & Boliang Li & Liping Du & Binfei Li, 2022. "A Study on the Adaptability of Nonhydrocarbon Gas-Assisted Steam Flooding to the Development of Heavy Oil Reservoirs," Energies, MDPI, vol. 15(13), pages 1-15, June.
    15. Keyang Cheng & Yongjian Liu & Zhilin Qi & Jie Tian & Taotao Luo & Shaobin Hu & Jun Li, 2022. "Laboratory Evaluation of the Plugging Performance of an Inorganic Profile Control Agent for Thermal Oil Recovery," Energies, MDPI, vol. 15(15), pages 1-10, July.
    16. Mingchen Ding & Ping Liu & Yefei Wang & Zhenyu Zhang & Jiangyang Dong & Yingying Duan, 2023. "Adaptability to Enhance Heavy Oil Recovery by Combination and Foam Systems with Fine-Emulsification Properties," Energies, MDPI, vol. 16(21), pages 1-12, October.
    17. Peng Li & Yanyu Zhang & Xiaofei Sun & Huijuan Chen & Yang Liu, 2020. "A Numerical Model for Investigating the Steam Conformance along the Dual-String Horizontal Wells in SAGD Operations," Energies, MDPI, vol. 13(15), pages 1-38, August.
    18. Tingen Fan & Wenjiang Xu & Wei Zheng & Weidong Jiang & Xiuchao Jiang & Taichao Wang & Xiaohu Dong, 2022. "A Production Performance Model of the Cyclic Steam Stimulation Process in Multilayer Heavy Oil Reservoirs," Energies, MDPI, vol. 15(5), pages 1-21, February.
    19. Zehao Xie & Qihong Feng & Jiyuan Zhang & Xiaoxuan Shao & Xianmin Zhang & Zenglin Wang, 2021. "Prediction of Conformance Control Performance for Cyclic-Steam-Stimulated Horizontal Well Using the XGBoost: A Case Study in the Chunfeng Heavy Oil Reservoir," Energies, MDPI, vol. 14(23), pages 1-22, December.
    20. Cui, Ziang & Sun, Mengdi & Mohammadian, Erfan & Hu, Qinhong & Liu, Bo & Ostadhassan, Mehdi & Yang, Wuxing & Ke, Yubin & Mu, Jingfu & Ren, Zijie & Pan, Zhejun, 2024. "Characterizing microstructural evolutions in low-mature lacustrine shale: A comparative experimental study of conventional heat, microwave, and water-saturated microwave stimulations," Energy, Elsevier, vol. 294(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224033978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.