IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i21p7303-d1269106.html
   My bibliography  Save this article

Adaptability to Enhance Heavy Oil Recovery by Combination and Foam Systems with Fine-Emulsification Properties

Author

Listed:
  • Mingchen Ding

    (State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 100083, China
    Research and Development Center for the Sustainable Development of Continental Sandstone Mature Oilfield by National Energy Administration, Beijing 100083, China
    Petroleum Engineering, China University of Petroleum East China, Qingdao 266580, China)

  • Ping Liu

    (State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 100083, China
    Research and Development Center for the Sustainable Development of Continental Sandstone Mature Oilfield by National Energy Administration, Beijing 100083, China)

  • Yefei Wang

    (Petroleum Engineering, China University of Petroleum East China, Qingdao 266580, China)

  • Zhenyu Zhang

    (Petroleum Engineering, China University of Petroleum East China, Qingdao 266580, China)

  • Jiangyang Dong

    (Petroleum Engineering, China University of Petroleum East China, Qingdao 266580, China)

  • Yingying Duan

    (Petroleum Engineering, China University of Petroleum East China, Qingdao 266580, China)

Abstract

Emulsification is increasingly emphasized for heavy oil recovery through chemical flooding. However, whether systems with fine-emulsification (FE) properties significantly outperform conventional ultra-low interfacial tension (IFT) systems, especially under varying water-oil viscosity ratios, remains unclear. In this research, two FE systems and one conventional ultra-low IFT system are compared in terms of their IFTs, emulsification properties, foaming behaviors, and heavy oil recovery (in the form of combination flooding and foam flooding). The results show that FE systems 1# and 2# can generate more stable emulsions of heavy oil than the traditional ultra-low IFT variant 3#. During the first combination flooding, FE systems recover 24.5% and 27.9% of the oil after water, obviously surpassing 21.0% of the ultra-low IFT system 3#; but as this ratio increases to 0.45, those factors become very similar to ones of 33.2%, 34.5% and 32.9%, with the former no longer outperforming the latter. In the second trials of foam flooding, at a lower water-oil viscosity ratio of 0.05, FE foam 1# becomes less effective than the ultra-low IFT 3#, with oil recovery factors of 27.2% and 31.6%, respectively; but foam 2# (combining medium emulsification and ultra-low IFT) remains optimal, with the highest recovery factor of 40.0%. Again, as this ratio becomes 0.45, the advantages of FE systems over the ultra-low IFT system are almost negligible, generating similar oil recoveries of 39.2%, 41.0% and 39.4%.

Suggested Citation

  • Mingchen Ding & Ping Liu & Yefei Wang & Zhenyu Zhang & Jiangyang Dong & Yingying Duan, 2023. "Adaptability to Enhance Heavy Oil Recovery by Combination and Foam Systems with Fine-Emulsification Properties," Energies, MDPI, vol. 16(21), pages 1-12, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7303-:d:1269106
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/21/7303/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/21/7303/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dong, Xiaohu & Liu, Huiqing & Chen, Zhangxin & Wu, Keliu & Lu, Ning & Zhang, Qichen, 2019. "Enhanced oil recovery techniques for heavy oil and oilsands reservoirs after steam injection," Applied Energy, Elsevier, vol. 239(C), pages 1190-1211.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Sijia & Jiang, Lanlan & Cheng, Zucheng & Liu, Yu & Zhao, Jiafei & Song, Yongchen, 2021. "Experimental study on the CO2-decane displacement front behavior in high permeability sand evaluated by magnetic resonance imaging," Energy, Elsevier, vol. 217(C).
    2. Li, Jing & Zhang, Lisong & Yang, Feiyue & Sun, Luning, 2020. "Positive measure and potential implication for heavy oil recovery of dip reservoir using SAGD based on numerical analysis," Energy, Elsevier, vol. 193(C).
    3. Zhou, Yuhao & Wang, Yanwei, 2022. "An integrated framework based on deep learning algorithm for optimizing thermochemical production in heavy oil reservoirs," Energy, Elsevier, vol. 253(C).
    4. Anufriev, I.S. & Kopyev, E.P. & Alekseenko, S.V. & Sharypov, O.V. & Vigriyanov, M.S., 2022. "New ecology safe waste-to-energy technology of liquid fuel combustion with superheated steam," Energy, Elsevier, vol. 250(C).
    5. Zhao, Renbao & Wang, Jiaying & Men, Ziyang & He, Jintang & Sun, Ziqi & Wang, Tiantian & Li, Xin & Yuan, Yuan & Xu, Han & Zhang, Haiyang, 2024. "Experimental investigation on cyclic steam stimulation assisted modified THAI to enhance oil recovery in steam-treated heavy oil," Energy, Elsevier, vol. 307(C).
    6. Zhang, Lisong & Li, Jing & Sun, Luning & Yang, Feiyue, 2021. "An influence mechanism of shale barrier on heavy oil recovery using SAGD based on theoretical and numerical analysis," Energy, Elsevier, vol. 216(C).
    7. Yiwei Wang & Yuan Wang & Sunhua Deng & Qiang Li & Jingjing Gu & Haoche Shui & Wei Guo, 2022. "Numerical Simulation Analysis of Heating Effect of Downhole Methane Catalytic Combustion Heater under High Pressure," Energies, MDPI, vol. 15(3), pages 1-23, February.
    8. Camilo Andrés Guerrero-Martin & Angie Tatiana Ortega-Ramírez & Paula Alejandra Perilla Rodríguez & Shalom Jireth Reyes López & Laura Estefanía Guerrero-Martin & Raúl Salinas-Silva & Stefanny Camacho-G, 2023. "Analysis of Environmental Sustainability through a Weighting Matrix in the Oil and Gas Industry," Sustainability, MDPI, vol. 15(11), pages 1-16, June.
    9. Ying Shi & Hong He & Yu Li & Fei Ding & Zhuo Zhou & Nuolin Xiong, 2023. "High-Temperature-Resistant Epoxy Resin Gel Behavior and Profile Control in Heavy Oil Steam Drive," Energies, MDPI, vol. 17(1), pages 1-14, December.
    10. Yao, Yue & Sun, Deqiang & Xu, Jin-Hua & Wang, Bin & Peng, Guohong & Sun, Bingmei, 2023. "Evaluation of enhanced oil recovery methods for mature continental heavy oil fields in China based on geology, technology and sustainability criteria," Energy, Elsevier, vol. 278(PB).
    11. Wang, Sen & Qin, Chaoxu & Feng, Qihong & Javadpour, Farzam & Rui, Zhenhua, 2021. "A framework for predicting the production performance of unconventional resources using deep learning," Applied Energy, Elsevier, vol. 295(C).
    12. Chai, Maojie & Nourozieh, Hossein & Chen, Zhangxin & Yang, Min, 2022. "A semi-compositional approach to model asphaltene precipitation and deposition in solvent-based bitumen recovery processes," Applied Energy, Elsevier, vol. 328(C).
    13. Anufriev, I.S., 2021. "Review of water/steam addition in liquid-fuel combustion systems for NOx reduction: Waste-to-energy trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    14. Yuanrui Zhu & Shijun Huang & Lun Zhao & Menglu Yang & Tong Wu, 2020. "A New Model for Discriminating the Source of Produced Water from Cyclic Steam Stimulation Wells in Edge-Bottom Water Reservoirs," Energies, MDPI, vol. 13(11), pages 1-15, May.
    15. Zhengbin Wu & Hanzhao Chen & Xidong Cai & Qiyang Gou & Liangliang Jiang & Kai Chen & Zhangxin Chen & Shu Jiang, 2023. "Current Status and Future Trends of In Situ Catalytic Upgrading of Extra Heavy Oil," Energies, MDPI, vol. 16(12), pages 1-29, June.
    16. Laura Osma & Luis García & Romel Pérez & Carolina Barbosa & Jesús Botett & Jorge Sandoval & Eduardo Manrique, 2019. "Benefit–Cost and Energy Efficiency Index to Support the Screening of Hybrid Cyclic Steam Stimulation Methods," Energies, MDPI, vol. 12(24), pages 1-16, December.
    17. Mateus-Rubiano, Camilo & Castillo, Andrea C. & León, Paola & Rueda, Luis & Molina V, Daniel & Leon, Adan Y., 2024. "Effect of hydrotreatment process on the physicochemical properties of a Colombian heavy crude oil post-catalytic aquathermolysis," Energy, Elsevier, vol. 298(C).
    18. Boris V. Malozyomov & Nikita V. Martyushev & Vladislav V. Kukartsev & Vadim S. Tynchenko & Vladimir V. Bukhtoyarov & Xiaogang Wu & Yadviga A. Tyncheko & Viktor A. Kukartsev, 2023. "Overview of Methods for Enhanced Oil Recovery from Conventional and Unconventional Reservoirs," Energies, MDPI, vol. 16(13), pages 1-48, June.
    19. Zhou, Guangzhao & Guo, Zanquan & Sun, Simin & Jin, Qingsheng, 2023. "A CNN-BiGRU-AM neural network for AI applications in shale oil production prediction," Applied Energy, Elsevier, vol. 344(C).
    20. Yang, Min & Liu, Yishan & Lu, Ning & Chai, Maojie & Wang, Sen & Feng, Qihong & Chen, Zhangxin, 2023. "Integration of ramped temperature oxidation and combustion tube tests for kinetic modeling of heavy oil in-Situ combustion," Energy, Elsevier, vol. 274(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7303-:d:1269106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.