IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v256y2022ics0360544222015183.html
   My bibliography  Save this article

Subsurface waste heat recovery from the abandoned steam assisted gravity drainage (SAGD) operations

Author

Listed:
  • Wei, Cao
  • Nawaz, Ayesha
  • Nath, Devjyoti
  • Zirrahi, Mohsen
  • Hassanzadeh, Hassan

Abstract

A considerable fraction of the energy injected during the thermal recovery of oil remains in the subsurface and wasted in the surrounding geological formations after the profitable life of oil wells is over. This work studied the concept of thermal energy extraction from the abandoned SAGD operations in oil sands reservoirs for generating electric power. The cold water is injected as a working fluid to extract heat after the oil production is ceased, and the produced hot water is fed to a surface binary cycle to generate electric power. The results show that an oil sands reservoir after SAGD operations could be regarded as an artificial geothermal system suitable for thermal energy extraction. It is demonstrated that a total net electric energy output of 57 GWh could be achieved based on a single SAGD well pair during a ten-year heat-extraction time, indicating the huge heat extraction potential at full field scale. The results show that the thermal energy conversion efficiency to electricity for the abandoned SAGD wells can reach as high as 12%. The demonstrated subsurface waste heat recovery from the abandoned SAGD sites revealed that between 15 and 36% reduction in CO2 emission could be achieved.

Suggested Citation

  • Wei, Cao & Nawaz, Ayesha & Nath, Devjyoti & Zirrahi, Mohsen & Hassanzadeh, Hassan, 2022. "Subsurface waste heat recovery from the abandoned steam assisted gravity drainage (SAGD) operations," Energy, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:energy:v:256:y:2022:i:c:s0360544222015183
    DOI: 10.1016/j.energy.2022.124615
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222015183
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124615?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Xiaolei & Falcone, Gioia & Alimonti, Claudio, 2018. "A systematic study of harnessing low-temperature geothermal energy from oil and gas reservoirs," Energy, Elsevier, vol. 142(C), pages 346-355.
    2. Liu, Lirong & Huang, Charley Z. & Huang, Guohe & Baetz, Brian & Pittendrigh, Scott M., 2018. "How a carbon tax will affect an emission-intensive economy: A case study of the Province of Saskatchewan, Canada," Energy, Elsevier, vol. 159(C), pages 817-826.
    3. Asai, Pranay & Panja, Palash & McLennan, John & Deo, Milind, 2019. "Effect of different flow schemes on heat recovery from Enhanced Geothermal Systems (EGS)," Energy, Elsevier, vol. 175(C), pages 667-676.
    4. Yang, Junyu & Xu, Qianghui & Jiang, Hang & Shi, Lin, 2021. "Reaction model of low asphaltene heavy oil from ramped temperature oxidation experimental analyses and numerical simulations," Energy, Elsevier, vol. 219(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Liu, Wei Victor, 2022. "Utilizing geothermal energy from enhanced geothermal systems as a heat source for oil sands separation: A numerical evaluation," Energy, Elsevier, vol. 238(PA).
    2. Zhang, Bo & Guo, Tiankui & Qu, Zhanqing & Wang, Jiwei & Chen, Ming & Liu, Xiaoqiang, 2023. "Numerical simulation of fracture propagation and production performance in a fractured geothermal reservoir using a 2D FEM-based THMD coupling model," Energy, Elsevier, vol. 273(C).
    3. Sun, Fengrui & Yao, Yuedong & Li, Guozhen & Li, Xiangfang, 2018. "Geothermal energy extraction in CO2 rich basin using abandoned horizontal wells," Energy, Elsevier, vol. 158(C), pages 760-773.
    4. Yang, Fujian & Wang, Guiling & Hu, Dawei & Liu, Yanguang & Zhou, Hui & Tan, Xianfeng, 2021. "Calibrations of thermo-hydro-mechanical coupling parameters for heating and water-cooling treated granite," Renewable Energy, Elsevier, vol. 168(C), pages 544-558.
    5. Zhang, Kaiqiang & Jia, Na & Liu, Lirong, 2019. "CO2 storage in fractured nanopores underground: Phase behaviour study," Applied Energy, Elsevier, vol. 238(C), pages 911-928.
    6. Lin, Zi & Liu, Xiaolei & Lao, Liyun & Liu, Hengxu, 2020. "Prediction of two-phase flow patterns in upward inclined pipes via deep learning," Energy, Elsevier, vol. 210(C).
    7. Zhai, Mengyu & Huang, Guohe & Liu, Lirong & Zheng, Boyue & Guan, Yuru, 2020. "Inter-regional carbon flows embodied in electricity transmission: network simulation for energy-carbon nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    8. Liu, Lirong & Huang, Guohe & Baetz, Brian & Huang, Charley Z. & Zhang, Kaiqiang, 2019. "Integrated GHG emissions and emission relationships analysis through a disaggregated ecologically-extended input-output model; A case study for Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 97-109.
    9. Yu, Ruyang & Zhang, Kai & Ramasubramanian, Brindha & Jiang, Shu & Ramakrishna, Seeram & Tang, Yuhang, 2024. "Ensemble learning for predicting average thermal extraction load of a hydrothermal geothermal field: A case study in Guanzhong Basin, China," Energy, Elsevier, vol. 296(C).
    10. Tri Purwaningsih, Vitriyani & Widodo, Tri, 2019. "Applying Tax Rate of 33,33% on Primary Energy in Indonesia," MPRA Paper 91315, University Library of Munich, Germany.
    11. Yang, Ruiyue & Hong, Chunyang & Liu, Wei & Wu, Xiaoguang & Wang, Tianyu & Huang, Zhongwei, 2021. "Non-contaminating cryogenic fluid access to high-temperature resources: Liquid nitrogen fracturing in a lab-scale Enhanced Geothermal System," Renewable Energy, Elsevier, vol. 165(P1), pages 125-138.
    12. Mahmoodpour, Saeed & Singh, Mrityunjay & Turan, Aysegul & Bär, Kristian & Sass, Ingo, 2022. "Simulations and global sensitivity analysis of the thermo-hydraulic-mechanical processes in a fractured geothermal reservoir," Energy, Elsevier, vol. 247(C).
    13. Akdas, Satuk Bugra & Onur, Mustafa, 2022. "Analytical solutions for predicting and optimizing geothermal energy extraction from an enhanced geothermal system with a multiple hydraulically fractured horizontal-well doublet," Renewable Energy, Elsevier, vol. 181(C), pages 567-580.
    14. Zuo, Yinhui & Sun, Yigao & Zhang, Luquan & Zhang, Chao & Wang, Yingchun & Jiang, Guangzheng & Wang, Xiaoguang & Zhang, Tao & Cui, Longqing, 2024. "Geothermal resource evaluation in the Sichuan Basin and suggestions for the development and utilization of abandoned oil and gas wells," Renewable Energy, Elsevier, vol. 225(C).
    15. Sean M. Watson & Gioia Falcone & Rob Westaway, 2020. "Repurposing Hydrocarbon Wells for Geothermal Use in the UK: The Onshore Fields with the Greatest Potential," Energies, MDPI, vol. 13(14), pages 1-29, July.
    16. Li, Wei & Wang, Peilin & Cheng, Wencheng & Nie, Kai, 2024. "Transnational remanufacturing decisions under carbon taxes and tariffs," European Journal of Operational Research, Elsevier, vol. 312(1), pages 150-163.
    17. Qiu, Lihua & He, Li & Kang, Yu & Liang, Dongzhe, 2022. "Assessment of the potential of enhanced geothermal systems in Asia under the impact of global warming," Renewable Energy, Elsevier, vol. 194(C), pages 636-646.
    18. Martina Tuschl & Tomislav Kurevija, 2023. "Revitalization Modelling of a Mature Oil Field with Bottom-Type Aquifer into Geothermal Resource—Reservoir Engineering and Techno-Economic Challenges," Energies, MDPI, vol. 16(18), pages 1-27, September.
    19. Jalilinasrabady, Saeid & Tanaka, Toshiaki & Itoi, Ryuichi & Goto, Hiroki, 2021. "Numerical simulation and production prediction assessment of Takigami geothermal reservoir," Energy, Elsevier, vol. 236(C).
    20. Zhang, Jinbo & Liu, Lirong & Xie, Yulei & Han, Dengcheng & Zhang, Yang & Li, Zheng & Guo, Huaicheng, 2023. "Revealing the impact of an energy–water–carbon nexus–based joint tax management policy on the environ-economic system," Applied Energy, Elsevier, vol. 331(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:256:y:2022:i:c:s0360544222015183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.