IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v255y2022ics0360544222013895.html
   My bibliography  Save this article

Nonlinear model predictive control of USC boiler-turbine power units in flexible operations via input convex neural network

Author

Listed:
  • Zhu, Hengyi
  • Tan, Peng
  • He, Ziqian
  • Zhang, Cheng
  • Fang, Qingyan
  • Chen, Gang

Abstract

Coordinated control of an ultra-supercritical (USC) boiler-turbine unit in the flexible-operation mode is challenging because of internal nonlinearity, various unknown disturbances, and the strong-coupled multivariable behavior of the unit. A novel nonlinear model predictive control (NMPC) approach is proposed to improve the flexibility of the USC unit, which introduces an input convex neural network (ICNN) to model the dynamics of the USC unit, and then computes the optimal control decisions by solving a convex model predictive control problem. Simulations are conducted on a 1000 MW USC boiler-turbine unit. The results demonstrate that the ICNN exhibits equivalent performance to a conventional neural network in learning the system dynamics. The root mean square errors of the throttle steam pressure, the separator steam enthalpy, and the power are 0.003 MPa, 0.162 kJ/kg, and 0.513 MW, respectively. In load tracking and disturbance rejection simulations, the proposed ICNN-based NMPC outperforms the linear model predictive control and conventional neural network-based NMPC. The ICNN-based NMPC provides a fast and stable load tracking capacity at a ramp rate of 10.8% MCR/min. Moreover, the superiority of the proposed approach is further confirmed by comparison with the internal-model robust adaptive control method, which is a state-of-the-art method. The proposed approach has good potential to improve the operational flexibility of USC power units.

Suggested Citation

  • Zhu, Hengyi & Tan, Peng & He, Ziqian & Zhang, Cheng & Fang, Qingyan & Chen, Gang, 2022. "Nonlinear model predictive control of USC boiler-turbine power units in flexible operations via input convex neural network," Energy, Elsevier, vol. 255(C).
  • Handle: RePEc:eee:energy:v:255:y:2022:i:c:s0360544222013895
    DOI: 10.1016/j.energy.2022.124486
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222013895
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124486?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hongxia Zhu & Gang Zhao & Li Sun & Kwang Y. Lee, 2019. "Nonlinear Predictive Control for a Boiler–Turbine Unit Based on a Local Model Network and Immune Genetic Algorithm," Sustainability, MDPI, vol. 11(18), pages 1-25, September.
    2. Hou, Guolian & Xiong, Jian & Zhou, Guiping & Gong, Linjuan & Huang, Congzhi & Wang, Shunjiang, 2021. "Coordinated control system modeling of ultra-supercritical unit based on a new fuzzy neural network," Energy, Elsevier, vol. 234(C).
    3. Lei Pan & Jiong Shen & Xiao Wu & Sing Kiong Nguang & Chen Chen, 2020. "Improved internal-model robust adaptive control with its application to coordinated control of USC boiler-turbine power units in flexible operations," International Journal of Systems Science, Taylor & Francis Journals, vol. 51(4), pages 669-686, March.
    4. Baglivo, Cristina & Congedo, Paolo Maria & Murrone, Graziano & Lezzi, Dalila, 2022. "Long-term predictive energy analysis of a high-performance building in a mediterranean climate under climate change," Energy, Elsevier, vol. 238(PA).
    5. Fan, He & Su, Zhi-gang & Wang, Pei-hong & Lee, Kwang Y., 2021. "A dynamic nonlinear model for a wide-load range operation of ultra-supercritical once-through boiler-turbine units," Energy, Elsevier, vol. 226(C).
    6. Wu, Zhenlong & Li, Donghai & Xue, Yali & Chen, YangQuan, 2019. "Gain scheduling design based on active disturbance rejection control for thermal power plant under full operating conditions," Energy, Elsevier, vol. 185(C), pages 744-762.
    7. Fan, He & Zhang, Yu-fei & Su, Zhi-gang & Wang, Ben, 2017. "A dynamic mathematical model of an ultra-supercritical coal fired once-through boiler-turbine unit," Applied Energy, Elsevier, vol. 189(C), pages 654-666.
    8. Wu, Xudong & Li, Chaohui & Shao, Ling & Meng, Jing & Zhang, Lixiao & Chen, Guoqian, 2021. "Is solar power renewable and carbon-neutral: Evidence from a pilot solar tower plant in China under a systems view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    9. Zhang, Kezhen & Zhao, Yongliang & Liu, Ming & Gao, Lin & Fu, Yue & Yan, Junjie, 2021. "Flexibility enhancement versus thermal efficiency of coal-fired power units during the condensate throttling processes," Energy, Elsevier, vol. 218(C).
    10. Liu, Ji-Zhen & Yan, Shu & Zeng, De-Liang & Hu, Yong & Lv, You, 2015. "A dynamic model used for controller design of a coal fired once-through boiler-turbine unit," Energy, Elsevier, vol. 93(P2), pages 2069-2078.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hou, Guolian & Huang, Ting & Huang, Congzhi, 2023. "Flexibility improvement of 1000 MW ultra-supercritical unit under full operating conditions by error-based ADRC and fast pigeon-inspired optimizer," Energy, Elsevier, vol. 270(C).
    2. Wu, Chunying & Sun, Lingfang & Piao, Heng & Yao, Lijia, 2024. "Adaptive fuzzy finite time integral sliding mode control of the coordinated system for 350 MW supercritical once-through boiler unit to enhance flexibility," Energy, Elsevier, vol. 302(C).
    3. Hyuk Choi & Yeongseok Choi & Un-Chul Moon & Kwang Y. Lee, 2023. "Supplementary Control of Conventional Coordinated Control for 1000 MW Ultra-Supercritical Thermal Power Plant Using One-Step Ahead Control," Energies, MDPI, vol. 16(17), pages 1-15, August.
    4. Hou, Guolian & Huang, Ting & Jiang, Hao & Cao, Huan & Zhang, Tianhao & Zhang, Jianhua & Gao, He & Liu, Yong & Zhou, Zhenhua & An, Zhenyi, 2024. "A flexible and deep peak shaving scheme for combined heat and power plant under full operating conditions," Energy, Elsevier, vol. 299(C).
    5. Hou, Guolian & Huang, Ting & Zheng, Fumeng & Huang, Congzhi, 2024. "A hierarchical reinforcement learning GPC for flexible operation of ultra-supercritical unit considering economy," Energy, Elsevier, vol. 289(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Guolian & Huang, Ting & Huang, Congzhi, 2023. "Flexibility improvement of 1000 MW ultra-supercritical unit under full operating conditions by error-based ADRC and fast pigeon-inspired optimizer," Energy, Elsevier, vol. 270(C).
    2. Huang, Congzhi & Li, Zhuoyong, 2023. "Data-driven modeling of ultra-supercritical unit coordinated control system by improved transformer network," Energy, Elsevier, vol. 266(C).
    3. Wu, Chunying & Sun, Lingfang & Piao, Heng & Yao, Lijia, 2024. "Adaptive fuzzy finite time integral sliding mode control of the coordinated system for 350 MW supercritical once-through boiler unit to enhance flexibility," Energy, Elsevier, vol. 302(C).
    4. Wang, Di & Zhou, Yu & Si, Long & Sun, Lingfang & Zhou, Yunlong, 2024. "Performance study of 660 MW coal-fired power plant coupled transcritical carbon dioxide energy storage cycle: Sensitivity and dynamic characteristic analysis," Energy, Elsevier, vol. 293(C).
    5. Esmaeili, Mohammad & Moradi, Hamed, 2023. "Robust & nonlinear control of an ultra-supercritical coal fired once-through boiler-turbine unit in order to optimize the uncertain problem," Energy, Elsevier, vol. 282(C).
    6. Al-Momani, Ahmad & Mohamed, Omar & Abu Elhaija, Wejdan, 2022. "Multiple processes modeling and identification for a cleaner supercritical power plant via Grey Wolf Optimizer," Energy, Elsevier, vol. 252(C).
    7. Liu, Kairui & Wang, Chao & Wang, Limin & Liu, Bin & Ye, Maojing & Guo, Yalong & Che, Defu, 2023. "Dynamic performance analysis and control strategy optimization for supercritical coal-fired boiler: A dynamic simulation," Energy, Elsevier, vol. 282(C).
    8. Zhang, Hongfu & Gao, Mingming & Fan, Haohao & Zhang, Kaiping & Zhang, Jiahui, 2022. "A dynamic model for supercritical once-through circulating fluidized bed boiler-turbine units," Energy, Elsevier, vol. 241(C).
    9. Omar Mohamed & Ashraf Khalil & Jihong Wang, 2020. "Modeling and Control of Supercritical and Ultra-Supercritical Power Plants: A Review," Energies, MDPI, vol. 13(11), pages 1-23, June.
    10. Hou, Guolian & Gong, Linjuan & Hu, Bo & Su, Huilin & Huang, Ting & Huang, Congzhi & Fan, Wei & Zhao, Yuanzhu, 2022. "Application of fast adaptive moth-flame optimization in flexible operation modeling for supercritical unit," Energy, Elsevier, vol. 239(PA).
    11. Huang, Congzhi & Sheng, Xinxin, 2020. "Data-driven model identification of boiler-turbine coupled process in 1000 MW ultra-supercritical unit by improved bird swarm algorithm," Energy, Elsevier, vol. 205(C).
    12. Hou, Guolian & Huang, Ting & Jiang, Hao & Cao, Huan & Zhang, Tianhao & Zhang, Jianhua & Gao, He & Liu, Yong & Zhou, Zhenhua & An, Zhenyi, 2024. "A flexible and deep peak shaving scheme for combined heat and power plant under full operating conditions," Energy, Elsevier, vol. 299(C).
    13. Zhou, Hong & Chen, Cheng & Lai, Jingang & Lu, Xiaoqing & Deng, Qijun & Gao, Xingran & Lei, Zhongcheng, 2018. "Affine nonlinear control for an ultra-supercritical coal fired once-through boiler-turbine unit," Energy, Elsevier, vol. 153(C), pages 638-649.
    14. Hübel, Moritz & Meinke, Sebastian & Andrén, Marcus T. & Wedding, Christoffer & Nocke, Jürgen & Gierow, Conrad & Hassel, Egon & Funkquist, Jonas, 2017. "Modelling and simulation of a coal-fired power plant for start-up optimisation," Applied Energy, Elsevier, vol. 208(C), pages 319-331.
    15. Zhao, Yongliang & Wang, Chaoyang & Liu, Ming & Chong, Daotong & Yan, Junjie, 2018. "Improving operational flexibility by regulating extraction steam of high-pressure heaters on a 660 MW supercritical coal-fired power plant: A dynamic simulation," Applied Energy, Elsevier, vol. 212(C), pages 1295-1309.
    16. Hao Zhang & Xiangjie Liu & Xiaobing Kong & Kwang Y. Lee, 2019. "Stacked Auto-Encoder Modeling of an Ultra-Supercritical Boiler-Turbine System," Energies, MDPI, vol. 12(21), pages 1-14, October.
    17. Jiakui Shi & Shuangshuang Fan & Jiajia Li & Jiangnan Cheng & Jie Wan & Peng E, 2023. "An Optimization Method of Steam Turbine Load Resilient Adjustment by Characterizing Dynamic Changes in Superheated Steam Energy," Energies, MDPI, vol. 16(8), pages 1-15, April.
    18. Ioannis Avagianos & Dimitrios Rakopoulos & Sotirios Karellas & Emmanouil Kakaras, 2020. "Review of Process Modeling of Solid-Fuel Thermal Power Plants for Flexible and Off-Design Operation," Energies, MDPI, vol. 13(24), pages 1-41, December.
    19. Hou, Guolian & Huang, Ting & Zheng, Fumeng & Gong, Linjuan & Huang, Congzhi & Zhang, Jianhua, 2023. "Application of multi-agent EADRC in flexible operation of combined heat and power plant considering carbon emission and economy," Energy, Elsevier, vol. 263(PB).
    20. Wang, Yanhong & Cao, Lihua & Hu, Pengfei & Li, Bo & Li, Yong, 2019. "Model establishment and performance evaluation of a modified regenerative system for a 660 MW supercritical unit running at the IPT-setting mode," Energy, Elsevier, vol. 179(C), pages 890-915.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:255:y:2022:i:c:s0360544222013895. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.