IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v311y2024ics0360544224032468.html
   My bibliography  Save this article

Study on water hammer phase transition characteristics of dense/liquid phase CO2 pipeline

Author

Listed:
  • Zhu, Jianlu
  • Wu, Jialing
  • Xie, Naiya
  • Li, Zihe
  • Hu, Qihui
  • Li, Yuxing

Abstract

Under water hammer conditions, dense/liquid phase CO2 pipelines are prone to enter the phase equilibrium zone due to significant pressure fluctuations, further disrupting flow stability. At present, the research on the sudden changes in physical properties and pressure wave transmission characteristics caused by CO2 phase transition during water hammer transient process is not clear. This article uses experiments to screen the state equation suitable for CO2 phase characteristic calculation. Based on this, the characteristic line method is used to solve the one-dimensional pipeline water hammer flow process. When the water hammer pressure is lower than the saturation pressure, the corresponding gas phase fraction is solved using the isentropic principle. The results indicate that a phase transition occurs under water hammer conditions when the operating temperature is 280–300 K and the operating pressure is 0.59 %–4.55 % higher than the saturation pressure. When a phase transition occurs, for the valve front, 1.33 % gas generation will increase the pressure wave velocity by 1.67 %, and for the valve rear, 0.86 % gas generation will increase the pressure wave velocity by 0.61 %. This study provides a basis for the safe and stable operation of CO2 pipelines.

Suggested Citation

  • Zhu, Jianlu & Wu, Jialing & Xie, Naiya & Li, Zihe & Hu, Qihui & Li, Yuxing, 2024. "Study on water hammer phase transition characteristics of dense/liquid phase CO2 pipeline," Energy, Elsevier, vol. 311(C).
  • Handle: RePEc:eee:energy:v:311:y:2024:i:c:s0360544224032468
    DOI: 10.1016/j.energy.2024.133470
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224032468
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133470?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Teng, Lin & Li, Yuxing & Hu, Qihui & Zhang, Datong & Ye, Xiao & Gu, Shuaiwei & Wang, Cailin, 2018. "Experimental study of near-field structure and thermo-hydraulics of supercritical CO2 releases," Energy, Elsevier, vol. 157(C), pages 806-814.
    2. Chen, Lei & Hu, Yanwei & Yang, Kai & Yan, Xinqing & Yu, Shuai & Yu, Jianliang & Chen, Shaoyun, 2023. "Fracture process characteristic study during fracture propagation of a CO2 transport network distribution pipeline," Energy, Elsevier, vol. 283(C).
    3. Guo, Xiaolu & Yan, Xingqing & Yu, Jianliang & Zhang, Yongchun & Chen, Shaoyun & Mahgerefteh, Haroun & Martynov, Sergey & Collard, Alexander & Proust, Christophe, 2016. "Pressure response and phase transition in supercritical CO2 releases from a large-scale pipeline," Applied Energy, Elsevier, vol. 178(C), pages 189-197.
    4. Yu, Shuai & Yan, Xingqing & He, Yifan & Yu, Jianliang & Chen, Shaoyun, 2024. "Study on the leakage morphology and temperature variations in the soil zone during large-scale buried CO2 pipeline leakage," Energy, Elsevier, vol. 288(C).
    5. Munkejord, Svend Tollak & Austegard, Anders & Deng, Han & Hammer, Morten & Stang, H.G. Jacob & Løvseth, Sigurd W., 2020. "Depressurization of CO2 in a pipe: High-resolution pressure and temperature data and comparison with model predictions," Energy, Elsevier, vol. 211(C).
    6. Li, Kang & Zhou, Xuejin & Tu, Ran & Xie, Qiyuan & Jiang, Xi, 2014. "The flow and heat transfer characteristics of supercritical CO2 leakage from a pipeline," Energy, Elsevier, vol. 71(C), pages 665-672.
    7. Munkejord, Svend Tollak & Hammer, Morten & Løvseth, Sigurd W., 2016. "CO2 transport: Data and models – A review," Applied Energy, Elsevier, vol. 169(C), pages 499-523.
    8. Onyebuchi, V.E. & Kolios, A. & Hanak, D.P. & Biliyok, C. & Manovic, V., 2018. "A systematic review of key challenges of CO2 transport via pipelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2563-2583.
    9. Simonsen, Kenneth René & Hansen, Dennis Severin & Pedersen, Simon, 2024. "Challenges in CO2 transportation: Trends and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    10. Liu, Xinyue & Liu, Xiaoming & Zhang, Zengqi, 2024. "Application of red mud in carbon capture, utilization and storage (CCUS) technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Lei & Hu, Yanwei & Yang, Kai & Yan, Xinqing & Yu, Shuai & Yu, Jianliang & Chen, Shaoyun, 2023. "Fracture process characteristic study during fracture propagation of a CO2 transport network distribution pipeline," Energy, Elsevier, vol. 283(C).
    2. Yu, Shuai & Yan, Xingqing & He, Yifan & Hu, Yanwei & Qiao, Fanfan & Yang, Kai & Cao, Zhangao & Chen, Lei & Liu, Zhenxi & Yu, Jianliang & Chen, Shaoyun, 2024. "Study on the effect of valve openings and multi-stage throttling structures on the pressure and temperature during CO2 pipeline venting processes," Energy, Elsevier, vol. 308(C).
    3. Guo, Xiaolu & Yan, Xingqing & Zheng, Yangguang & Yu, Jianliang & Zhang, Yongchun & Chen, Shaoyun & Chen, Lin & Mahgerefteh, Haroun & Martynov, Sergey & Collard, Alexander & Brown, Solomon, 2017. "Under-expanded jets and dispersion in high pressure CO2 releases from an industrial scale pipeline," Energy, Elsevier, vol. 119(C), pages 53-66.
    4. McLaughlin, Hope & Littlefield, Anna A. & Menefee, Maia & Kinzer, Austin & Hull, Tobias & Sovacool, Benjamin K. & Bazilian, Morgan D. & Kim, Jinsoo & Griffiths, Steven, 2023. "Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    5. Guo, Xiaolu & Yan, Xingqing & Yu, Jianliang & Yang, Yang & Zhang, Yongchun & Chen, Shaoyun & Mahgerefteh, Haroun & Martynov, Sergey & Collard, Alexander, 2017. "Pressure responses and phase transitions during the release of high pressure CO2 from a large-scale pipeline," Energy, Elsevier, vol. 118(C), pages 1066-1078.
    6. Chang, Yuan & Gao, Siqi & Ma, Qian & Wei, Ying & Li, Guoping, 2024. "Techno-economic analysis of carbon capture and utilization technologies and implications for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    7. Zhou, Yuan & Huang, Yanping & Tian, Gengyuan & Yuan, Yuan & Zeng, Chengtian & Huang, Jiajian & Tang, Longchang, 2022. "Classification and characteristics of supercritical carbon dioxide leakage from a vessel," Energy, Elsevier, vol. 258(C).
    8. Zhu, Jianlu & Xie, Naiya & Miao, Qing & Li, Zihe & Hu, Qihui & Yan, Feng & Li, Yuxing, 2024. "Simulation of boost path and phase control method in supercritical CO2 pipeline commissioning process," Renewable Energy, Elsevier, vol. 231(C).
    9. Guo, Xiaolu & Yan, Xingqing & Yu, Jianliang & Zhang, Yongchun & Chen, Shaoyun & Mahgerefteh, Haroun & Martynov, Sergey & Collard, Alexander & Proust, Christophe, 2016. "Under-expanded jets and dispersion in supercritical CO2 releases from a large-scale pipeline," Applied Energy, Elsevier, vol. 183(C), pages 1279-1291.
    10. Yu, Shuai & Yan, Xingqing & He, Yifan & Chen, Lei & Hu, Yanwei & Yang, Kai & Cao, Zhangao & Yu, Jianliang & Chen, Shaoyun, 2024. "Study on the decompression behavior during large-scale pipeline puncture releases of CO2 with various N2 compositions: Experiments and mechanism analysis," Energy, Elsevier, vol. 296(C).
    11. Yu, Shuai & Yan, Xingqing & He, Yifan & Chen, Lei & Yu, Jianliang & Chen, Shaoyun, 2024. "Establishment of a one-dimensional model for CO2 Pipeline rupture process and design recommendations," Energy, Elsevier, vol. 308(C).
    12. Yu, Shuai & Yan, Xingqing & He, Yifan & Yu, Jianliang & Chen, Shaoyun, 2024. "Study on the leakage morphology and temperature variations in the soil zone during large-scale buried CO2 pipeline leakage," Energy, Elsevier, vol. 288(C).
    13. Fan, Xing & Wang, Yangle & Zhou, Yuan & Chen, Jingtan & Huang, Yanping & Wang, Junfeng, 2018. "Experimental study of supercritical CO2 leakage behavior from pressurized vessels," Energy, Elsevier, vol. 150(C), pages 342-350.
    14. Wang, Peng-Tao & Wei, Yi-Ming & Yang, Bo & Li, Jia-Quan & Kang, Jia-Ning & Liu, Lan-Cui & Yu, Bi-Ying & Hou, Yun-Bing & Zhang, Xian, 2020. "Carbon capture and storage in China’s power sector: Optimal planning under the 2 °C constraint," Applied Energy, Elsevier, vol. 263(C).
    15. Jiang, Kai & Ashworth, Peta & Zhang, Shiyi & Hu, Guoping, 2022. "Print media representations of carbon capture utilization and storage (CCUS) technology in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    16. Marcelo Azevedo Benetti & Florin Iov, 2023. "A Novel Scheme to Allocate the Green Energy Transportation Costs—Application to Carbon Captured and Hydrogen," Energies, MDPI, vol. 16(7), pages 1-20, March.
    17. Suoton P. Peletiri & Nejat Rahmanian & Iqbal M. Mujtaba, 2018. "CO 2 Pipeline Design: A Review," Energies, MDPI, vol. 11(9), pages 1-25, August.
    18. Munkejord, Svend Tollak & Austegard, Anders & Deng, Han & Hammer, Morten & Stang, H.G. Jacob & Løvseth, Sigurd W., 2020. "Depressurization of CO2 in a pipe: High-resolution pressure and temperature data and comparison with model predictions," Energy, Elsevier, vol. 211(C).
    19. Wu, Pengzhi & Liu, Changchun & Wen, Hu & Luo, Zhenmin & Fan, Shixing & Mi, Wansheng, 2023. "Experimental investigation of jet impingement during accidental release of liquid CO2," Energy, Elsevier, vol. 279(C).
    20. Kontou, V. & Grimekis, D. & Braimakis, K. & Karellas, S., 2022. "Techno-economic assessment of dimethyl carbonate production based on carbon capture and utilization and power-to-fuel technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:311:y:2024:i:c:s0360544224032468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.