IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v263y2020ics0306261920302063.html
   My bibliography  Save this article

Carbon capture and storage in China’s power sector: Optimal planning under the 2 °C constraint

Author

Listed:
  • Wang, Peng-Tao
  • Wei, Yi-Ming
  • Yang, Bo
  • Li, Jia-Quan
  • Kang, Jia-Ning
  • Liu, Lan-Cui
  • Yu, Bi-Ying
  • Hou, Yun-Bing
  • Zhang, Xian

Abstract

Carbon capture and storage (CCS) has been widely recognized as a key technology to reduce CO2 emissions in the power sector. China’s power sector needs to achieve large-scale emission reductions through CCS technologies to contribute to limiting the global temperature rise to less than 2℃. The best source–sink matching directly affects total mitigation costs for the power sector. However, China has not yet established an optimal CCS plan. This study evaluates the least-cost source–sink relationship and cluster development opportunities for CCS in China under the 2 °C constraint. The results show that 165 existing coal-fired power plants, which have an installed capacity of approximately 175 GW, need CCS retrofitting and can find a suitable CO2 storage site within an average radius of 115 km. The total captured CO2 is 17.42 billion tons in Northeast, North, East, Northwest, and South regions with the share of 10.79% (1.88 GtCO2), 31.29% (5.45 GtCO2), 35.25% (6.14GtCO2), 22.39% (3.90GtCO2), and 0.27% (47MtCO2), respectively. Approximately 90% of captured CO2 can be stored in the Songliao, Bohai Bay, and Subei basins. In addition, 23% of the emission reductions can be achieved through CO2-enhanced oil recovery. The total mitigation cost is USD 1212 billion and the revenue generated from CO2-enhanced oil recovery is USD 377 billion. Overall, it provides the least-cost source–sink layout and cluster development opportunities for CCS development under the 2 ℃ constraint, which can serve as a basis for large-scale CCS adoption in China.

Suggested Citation

  • Wang, Peng-Tao & Wei, Yi-Ming & Yang, Bo & Li, Jia-Quan & Kang, Jia-Ning & Liu, Lan-Cui & Yu, Bi-Ying & Hou, Yun-Bing & Zhang, Xian, 2020. "Carbon capture and storage in China’s power sector: Optimal planning under the 2 °C constraint," Applied Energy, Elsevier, vol. 263(C).
  • Handle: RePEc:eee:appene:v:263:y:2020:i:c:s0306261920302063
    DOI: 10.1016/j.apenergy.2020.114694
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920302063
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114694?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kuriqi, Alban & Pinheiro, António N. & Sordo-Ward, Alvaro & Garrote, Luis, 2019. "Flow regime aspects in determining environmental flows and maximising energy production at run-of-river hydropower plants," Applied Energy, Elsevier, vol. 256(C).
    2. Li, Jia & Liang, Xi & Cockerill, Tim, 2011. "Getting ready for carbon capture and storage through a ‘CCS (Carbon Capture and Storage) Ready Hub’: A case study of Shenzhen city in Guangdong province, China," Energy, Elsevier, vol. 36(10), pages 5916-5924.
    3. Höller, Samuel & Viebahn, Peter, 2016. "Facing the uncertainty of CO2 storage capacity in China by developing different storage scenarios," Energy Policy, Elsevier, vol. 89(C), pages 64-73.
    4. Hao Chen & Chi Kong Chyong & Zhifu Mi & Yi-Ming Wei, 2020. "Reforming the Operation Mechanism of Chinese Electricity System: Benefits, Challenges and Possible Solutions," The Energy Journal, , vol. 41(2), pages 219-246, March.
    5. Yang, Bo & Wei, Yi-Ming & Hou, Yunbing & Li, Hui & Wang, Pengtao, 2019. "Life cycle environmental impact assessment of fuel mix-based biomass co-firing plants with CO2 capture and storage," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    6. Qianlin Zhu & Chuang Wang & Zhihan Fan & Jing Ma & Fu Chen, 2019. "Optimal matching between CO2 sources in Jiangsu province and sinks in Subei‐Southern South Yellow Sea basin, China," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 9(1), pages 95-105, February.
    7. Fan, Jing-Li & Xu, Mao & Li, Fengyu & Yang, Lin & Zhang, Xian, 2018. "Carbon capture and storage (CCS) retrofit potential of coal-fired power plants in China: The technology lock-in and cost optimization perspective," Applied Energy, Elsevier, vol. 229(C), pages 326-334.
    8. Munkejord, Svend Tollak & Hammer, Morten & Løvseth, Sigurd W., 2016. "CO2 transport: Data and models – A review," Applied Energy, Elsevier, vol. 169(C), pages 499-523.
    9. Guo, Jian-Xin & Huang, Chen, 2020. "Feasible roadmap for CCS retrofit of coal-based power plants to reduce Chinese carbon emissions by 2050," Applied Energy, Elsevier, vol. 259(C).
    10. L׳Orange Seigo, Selma & Dohle, Simone & Siegrist, Michael, 2014. "Public perception of carbon capture and storage (CCS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 848-863.
    11. Middleton, Richard S. & Bielicki, Jeffrey M., 2009. "A scalable infrastructure model for carbon capture and storage: SimCCS," Energy Policy, Elsevier, vol. 37(3), pages 1052-1060, March.
    12. Rawshan Ali & Alban Kuriqi & Shadan Abubaker & Ozgur Kisi, 2019. "Hydrologic Alteration at the Upper and Middle Part of the Yangtze River, China: Towards Sustainable Water Resource Management Under Increasing Water Exploitation," Sustainability, MDPI, vol. 11(19), pages 1-16, September.
    13. Yang, Lin & Xu, Mao & Yang, Yuantao & Fan, Jingli & Zhang, Xian, 2019. "Comparison of subsidy schemes for carbon capture utilization and storage (CCUS) investment based on real option approach: Evidence from China," Applied Energy, Elsevier, vol. 255(C).
    14. Lee, Jui-Yuan & Tan, Raymond R. & Chen, Cheng-Liang, 2014. "A unified model for the deployment of carbon capture and storage," Applied Energy, Elsevier, vol. 121(C), pages 140-148.
    15. Wei, Yi-Ming & Chen, Hao & Chyong, Chi Kong & Kang, Jia-Ning & Liao, Hua & Tang, Bao-Jun, 2018. "Economic dispatch savings in the coal-fired power sector: An empirical study of China," Energy Economics, Elsevier, vol. 74(C), pages 330-342.
    16. Zhang, Shuai & Liu, Linlin & Zhang, Lei & Zhuang, Yu & Du, Jian, 2018. "An optimization model for carbon capture utilization and storage supply chain: A case study in Northeastern China," Applied Energy, Elsevier, vol. 231(C), pages 194-206.
    17. Sun, Liang & Chen, Wenying, 2017. "Development and application of a multi-stage CCUS source–sink matching model," Applied Energy, Elsevier, vol. 185(P2), pages 1424-1432.
    18. Niall Mac Dowell & Paul S. Fennell & Nilay Shah & Geoffrey C. Maitland, 2017. "The role of CO2 capture and utilization in mitigating climate change," Nature Climate Change, Nature, vol. 7(4), pages 243-249, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gu, Changwan & Li, Kai & Gao, Shikang & Li, Jiayu & Mao, Yifan, 2024. "CO2 abatement feasibility for blast furnace CCUS retrofits in BF-BOF steel plants in China," Energy, Elsevier, vol. 294(C).
    2. Callas, Catherine & Saltzer, Sarah D. & Steve Davis, J. & Hashemi, Sam S. & Kovscek, Anthony R. & Okoroafor, Esuru R. & Wen, Gege & Zoback, Mark D. & Benson, Sally M., 2022. "Criteria and workflow for selecting depleted hydrocarbon reservoirs for carbon storage," Applied Energy, Elsevier, vol. 324(C).
    3. Hamid M. Pouran & Seyed M. Karimi & Mariana Padilha Campos Lopes & Yong Sheng, 2022. "What China’s Environmental Policy Means for PV Solar, Electric Vehicles, and Carbon Capture and Storage Technologies," Energies, MDPI, vol. 15(23), pages 1-13, November.
    4. Xiang, Yue & Guo, Yongtao & Wu, Gang & Liu, Junyong & Sun, Wei & Lei, Yutian & Zeng, Pingliang, 2022. "Low-carbon economic planning of integrated electricity-gas energy systems," Energy, Elsevier, vol. 249(C).
    5. Zhang, Kai & Lau, Hon Chung & Liu, Shuyang & Li, Hangyu, 2022. "Carbon capture and storage in the coastal region of China between Shanghai and Hainan," Energy, Elsevier, vol. 247(C).
    6. Chen, Siyuan & Liu, Jiangfeng & Zhang, Qi & Teng, Fei & McLellan, Benjamin C., 2022. "A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Chen, Weiming & Zhang, Zhenjun & Chen, Kaiyuan, 2023. "Inter-regional economic-environmental correlation effects of power sector in China," Energy, Elsevier, vol. 278(C).
    8. Tang, Bao-Jun & Guo, Yang-Yang & Yu, Biying & Harvey, L.D. Danny, 2021. "Pathways for decarbonizing China’s building sector under global warming thresholds," Applied Energy, Elsevier, vol. 298(C).
    9. Patange, Omkar S. & Garg, Amit & Jayaswal, Sachin, 2022. "An integrated bottom-up optimization to investigate the role of BECCS in transitioning towards a net-zero energy system: A case study from Gujarat, India," Energy, Elsevier, vol. 255(C).
    10. Hu, Yingying & Wu, Wei, 2023. "Can fossil energy make a soft landing?— the carbon-neutral pathway in China accompanying CCS," Energy Policy, Elsevier, vol. 174(C).
    11. Hou, Guolian & Xiong, Jian & Zhou, Guiping & Gong, Linjuan & Huang, Congzhi & Wang, Shunjiang, 2021. "Coordinated control system modeling of ultra-supercritical unit based on a new fuzzy neural network," Energy, Elsevier, vol. 234(C).
    12. Guo, Jian & Zhong, Minghao & Chen, Shuran, 2022. "Analysis and simulation of BECCS vertical integration model in China based on evolutionary game and system dynamics," Energy, Elsevier, vol. 252(C).
    13. Wang, Zhaohua & Zhang, Hongzhi & Li, Hao & Wang, Bo & Cui, Qi & Zhang, Bin, 2022. "Economic impact and energy transformation of different effort-sharing schemes to pursue 2 ℃ warming limit in China," Applied Energy, Elsevier, vol. 320(C).
    14. Gengyu Gao & Min Zhang & Shanshan Wang & Can Wang & RuiQin Zhang, 2022. "Assessment of pollutant emissions reduction potential of energy infrastructure in industrial parks of Henan Province," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8071-8091, June.
    15. Zhong, Zhiqi & Chen, Yongqiang & Fu, Meiyan & Li, Minzhen & Yang, Kaishuo & Zeng, Lingping & Liang, Jing & Ma, Rupeng & Xie, Quan, 2023. "Role of CO2 geological storage in China's pledge to carbon peak by 2030 and carbon neutrality by 2060," Energy, Elsevier, vol. 272(C).
    16. Zhu, Yanlei & Song, Yan & Yuan, Jiahai, 2021. "Structural distortion and the shortage of peak-load power resources in China: A screening curve approach and case study of Shandong Province," Utilities Policy, Elsevier, vol. 70(C).
    17. Wang, Yihan & Wen, Zongguo & Xu, Mao & Kosajan, Vorada, 2024. "The carbon-energy-water nexus of the carbon capture, utilization, and storage technology deployment schemes: A case study in China's cement industry," Applied Energy, Elsevier, vol. 362(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Shuai & Zhuang, Yu & Liu, Linlin & Zhang, Lei & Du, Jian, 2019. "Risk management optimization framework for the optimal deployment of carbon capture and storage system under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    2. Zhang, Shuai & Liu, Linlin & Zhang, Lei & Zhuang, Yu & Du, Jian, 2018. "An optimization model for carbon capture utilization and storage supply chain: A case study in Northeastern China," Applied Energy, Elsevier, vol. 231(C), pages 194-206.
    3. Liu, Bingsheng & Liu, Song & Xue, Bin & Lu, Shijian & Yang, Yang, 2021. "Formalizing an integrated decision-making model for the risk assessment of carbon capture, utilization, and storage projects: From a sustainability perspective," Applied Energy, Elsevier, vol. 303(C).
    4. Fan, Jing-Li & Shen, Shuo & Wei, Shi-Jie & Xu, Mao & Zhang, Xian, 2020. "Near-term CO2 storage potential for coal-fired power plants in China: A county-level source-sink matching assessment," Applied Energy, Elsevier, vol. 279(C).
    5. Chen, Siyuan & Liu, Jiangfeng & Zhang, Qi & Teng, Fei & McLellan, Benjamin C., 2022. "A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Pavel Tcvetkov, 2021. "Climate Policy Imbalance in the Energy Sector: Time to Focus on the Value of CO 2 Utilization," Energies, MDPI, vol. 14(2), pages 1-22, January.
    7. Tapia, John Frederick D. & Lee, Jui-Yuan & Ooi, Raymond E.H. & Foo, Dominic C.Y. & Tan, Raymond R., 2016. "Optimal CO2 allocation and scheduling in enhanced oil recovery (EOR) operations," Applied Energy, Elsevier, vol. 184(C), pages 337-345.
    8. Yang, Lin & Lv, Haodong & Jiang, Dalin & Fan, Jingli & Zhang, Xian & He, Weijun & Zhou, Jinsheng & Wu, Wenjing, 2020. "Whether CCS technologies will exacerbate the water crisis in China? —A full life-cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    9. Chen, Hao & Cui, Jian & Song, Feng & Jiang, Zhigao, 2022. "Evaluating the impacts of reforming and integrating China's electricity sector," Energy Economics, Elsevier, vol. 108(C).
    10. Zhang, Kai & Lau, Hon Chung & Liu, Shuyang & Li, Hangyu, 2022. "Carbon capture and storage in the coastal region of China between Shanghai and Hainan," Energy, Elsevier, vol. 247(C).
    11. Jiang, Hou & Lu, Ning & Huang, Guanghui & Yao, Ling & Qin, Jun & Liu, Hengzi, 2020. "Spatial scale effects on retrieval accuracy of surface solar radiation using satellite data," Applied Energy, Elsevier, vol. 270(C).
    12. Adrien Nicolle & Diego Cebreros & Olivier Massol & Emma Jagu, 2023. "Modeling CO2 pipeline systems: An analytical lens for CCS regulation," Post-Print hal-04297191, HAL.
    13. Shenghao Feng & Xiujian Peng & Philip Adams, 2021. "Energy and Economic Implications of Carbon Neutrality in China -- A Dynamic General Equilibrium Analysis," Centre of Policy Studies/IMPACT Centre Working Papers g-318, Victoria University, Centre of Policy Studies/IMPACT Centre.
    14. Dongdong Song & Tong Jiang & Chuanping Rao, 2022. "Review of Policy Framework for the Development of Carbon Capture, Utilization and Storage in China," IJERPH, MDPI, vol. 19(24), pages 1-16, December.
    15. Abdoli, B. & Hooshmand, F. & MirHassani, S.A., 2023. "A novel stochastic programming model under endogenous uncertainty for the CCS-EOR planning problem," Applied Energy, Elsevier, vol. 338(C).
    16. Suoton P. Peletiri & Nejat Rahmanian & Iqbal M. Mujtaba, 2018. "CO 2 Pipeline Design: A Review," Energies, MDPI, vol. 11(9), pages 1-25, August.
    17. Yakun Zhang & Wenzhe Tang & Colin F. Duffield & Lihai Zhang & Felix Kin Peng Hui, 2021. "Environment Management of Hydropower Development: A Case Study," Energies, MDPI, vol. 14(7), pages 1-12, April.
    18. Farrell, C.C. & Osman, A.I. & Doherty, R. & Saad, M. & Zhang, X. & Murphy, A. & Harrison, J. & Vennard, A.S.M. & Kumaravel, V. & Al-Muhtaseb, A.H. & Rooney, D.W., 2020. "Technical challenges and opportunities in realising a circular economy for waste photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    19. Wang, Zheng-Xin & Wang, Zhi-Wei & Li, Qin, 2020. "Forecasting the industrial solar energy consumption using a novel seasonal GM(1,1) model with dynamic seasonal adjustment factors," Energy, Elsevier, vol. 200(C).
    20. Yang, Lin & Xu, Mao & Fan, Jingli & Liang, Xi & Zhang, Xian & Lv, Haodong & Wang, Dong, 2021. "Financing coal-fired power plant to demonstrate CCS (carbon capture and storage) through an innovative policy incentive in China," Energy Policy, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:263:y:2020:i:c:s0306261920302063. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.