IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v310y2024ics0360544224029621.html
   My bibliography  Save this article

Accuracy and applicability of ship's fuel consumption prediction models: A comprehensive comparative analysis

Author

Listed:
  • Luo, Xi
  • Yan, Ran
  • Xu, Lang
  • Wang, Shuaian

Abstract

The available extensive ship activity data enables employing a complex data-driven resistance-based power model to estimate ship's instantaneous power, and thus the ship's fuel consumption. The Ship Traffic Emissions Assessment Model emerges as a prominent example of such models. However, the performance of the Ship Traffic Emissions Assessment Model in ship's fuel consumption estimation is rarely verified by real fuel consumption data. Hence, this study aims to validate the accuracy of the Ship Traffic Emissions Assessment Model using real fuel consumption data and evaluates its applicability in terms of input features. Situations where the Ship Traffic Emissions Assessment Model shows large errors are identified to analyze its applicability. Furthermore, the Ship Traffic Emissions Assessment Model is compared with other popular fuel consumption prediction models, including the propeller law, the gradient-boosted regression tree model, and two grey box models. A systematical analysis is conducted to evaluate the applicability of various fuel consumption prediction models in different sailing scenarios, providing insights in selecting appropriate models for accurate ship's fuel consumption estimation. The findings contribute to optimizing the ship energy efficiency and facilitating the transition to alternative energy options, ultimately leading to a reduction in greenhouse gas emissions of the maritime industry.

Suggested Citation

  • Luo, Xi & Yan, Ran & Xu, Lang & Wang, Shuaian, 2024. "Accuracy and applicability of ship's fuel consumption prediction models: A comprehensive comparative analysis," Energy, Elsevier, vol. 310(C).
  • Handle: RePEc:eee:energy:v:310:y:2024:i:c:s0360544224029621
    DOI: 10.1016/j.energy.2024.133187
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224029621
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133187?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruan, Zhang & Huang, Lianzhong & Wang, Kai & Ma, Ranqi & Wang, Zhongyi & Zhang, Rui & Zhao, Haoyang & Wang, Cong, 2024. "A novel prediction method of fuel consumption for wing-diesel hybrid vessels based on feature construction," Energy, Elsevier, vol. 286(C).
    2. Liqian Yang & Gang Chen & Jinlou Zhao & Niels Gorm Malý Rytter, 2020. "Ship Speed Optimization Considering Ocean Currents to Enhance Environmental Sustainability in Maritime Shipping," Sustainability, MDPI, vol. 12(9), pages 1-24, May.
    3. Wang, Kai & Hua, Yu & Huang, Lianzhong & Guo, Xin & Liu, Xing & Ma, Zhongmin & Ma, Ranqi & Jiang, Xiaoli, 2023. "A novel GA-LSTM-based prediction method of ship energy usage based on the characteristics analysis of operational data," Energy, Elsevier, vol. 282(C).
    4. Luan Thanh Le & Gunwoo Lee & Keun-Sik Park & Hwayoung Kim, 2020. "Neural network-based fuel consumption estimation for container ships in Korea," Maritime Policy & Management, Taylor & Francis Journals, vol. 47(5), pages 615-632, July.
    5. Yan, Ran & Yang, Dong & Wang, Tianyu & Mo, Haoyu & Wang, Shuaian, 2024. "Improving ship energy efficiency: Models, methods, and applications," Applied Energy, Elsevier, vol. 368(C).
    6. Meng, Qiang & Du, Yuquan & Wang, Yadong, 2016. "Shipping log data based container ship fuel efficiency modeling," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 207-229.
    7. Yuan, Jun & Nian, Victor & He, Junliang & Yan, Wei, 2019. "Cost-effectiveness analysis of energy efficiency measures for maritime shipping using a metamodel based approach with different data sources," Energy, Elsevier, vol. 189(C).
    8. Moreno-Gutiérrez, Juan & Calderay, Fátima & Saborido, Nieves & Boile, Maria & Rodríguez Valero, Rafael & Durán-Grados, Vanesa, 2015. "Methodologies for estimating shipping emissions and energy consumption: A comparative analysis of current methods," Energy, Elsevier, vol. 86(C), pages 603-616.
    9. Yan, Ran & Wang, Shuaian & Psaraftis, Harilaos N., 2021. "Data analytics for fuel consumption management in maritime transportation: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Ran & Wang, Shuaian & Psaraftis, Harilaos N., 2021. "Data analytics for fuel consumption management in maritime transportation: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    2. Wang, Kai & Liu, Xing & Guo, Xin & Wang, Jianhang & Wang, Zhuang & Huang, Lianzhong, 2024. "A novel high-precision and self-adaptive prediction method for ship energy consumption based on the multi-model fusion approach," Energy, Elsevier, vol. 310(C).
    3. Nguyen, Son & Fu, Xiuju & Ogawa, Daichi & Zheng, Qin, 2023. "An application-oriented testing regime and multi-ship predictive modeling for vessel fuel consumption prediction," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    4. Han, Peixiu & Liu, Zhongbo & Li, Chi & Sun, Zhuo & Yan, Chunxin, 2024. "A novel federated learning-based two-stage approach for ship energy consumption optimization considering both shipping data security and statistical heterogeneity," Energy, Elsevier, vol. 309(C).
    5. Yan, Ran & Yang, Dong & Wang, Tianyu & Mo, Haoyu & Wang, Shuaian, 2024. "Improving ship energy efficiency: Models, methods, and applications," Applied Energy, Elsevier, vol. 368(C).
    6. Yang, Ying & Liu, Yang & Li, Guorong & Zhang, Zekun & Liu, Yanbin, 2024. "Harnessing the power of Machine learning for AIS Data-Driven maritime Research: A comprehensive review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    7. Li, Zhijun & Fei, Jiangang & Du, Yuquan & Ong, Kok-Leong & Arisian, Sobhan, 2024. "A near real-time carbon accounting framework for the decarbonization of maritime transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 191(C).
    8. Vanessa Durán-Grados & Yolanda Amado-Sánchez & Fátima Calderay-Cayetano & Rubén Rodríguez-Moreno & Emilio Pájaro-Velázquez & Antonio Ramírez-Sánchez & Sofia I. V. Sousa & Rafael A. O. Nunes & Maria C., 2020. "Calculating a Drop in Carbon Emissions in the Strait of Gibraltar (Spain) from Domestic Shipping Traffic Caused by the COVID-19 Crisis," Sustainability, MDPI, vol. 12(24), pages 1-14, December.
    9. Xinyu Li & Yi Zuo & Junhao Jiang, 2022. "Application of Regression Analysis Using Broad Learning System for Time-Series Forecast of Ship Fuel Consumption," Sustainability, MDPI, vol. 15(1), pages 1-21, December.
    10. Al-Falahi, Monaaf D.A. & Jayasinghe, Shantha D.G. & Enshaei, Hossein, 2019. "Hybrid algorithm for optimal operation of hybrid energy systems in electric ferries," Energy, Elsevier, vol. 187(C).
    11. Jarosław Ziółkowski & Mateusz Oszczypała & Jerzy Małachowski & Joanna Szkutnik-Rogoż, 2021. "Use of Artificial Neural Networks to Predict Fuel Consumption on the Basis of Technical Parameters of Vehicles," Energies, MDPI, vol. 14(9), pages 1-23, May.
    12. Petri Helo & Henri Paukku & Tero Sairanen, 2021. "Containership cargo profiles, cargo systems, and stowage capacity: key performance indicators," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(1), pages 28-48, March.
    13. Ma, Kai & Nie, Xuefeng & Yang, Jie & Zha, Linlin & Li, Guoqiang & Li, Haibin, 2025. "A power load forecasting method in port based on VMD-ICSS-hybrid neural network," Applied Energy, Elsevier, vol. 377(PB).
    14. Yao Zhong & Tengbin Li & Krzysztof Przystupa & Cong Lin & Guangrun Yang & Sen Yang & Orest Kochan & Jarosław Sikora, 2024. "Spatiotemporal Correlation Analysis for Predicting Current Transformer Errors in Smart Grids," Energies, MDPI, vol. 17(7), pages 1-14, March.
    15. Jun Yuan & Jiang Zhu & Victor Nian, 2020. "Neural Network Modeling Based on the Bayesian Method for Evaluating Shipping Mitigation Measures," Sustainability, MDPI, vol. 12(24), pages 1-14, December.
    16. Chi, Hongtao & Pedrielli, Giulia & Ng, Szu Hui & Kister, Thomas & Bressan, Stéphane, 2018. "A framework for real-time monitoring of energy efficiency of marine vessels," Energy, Elsevier, vol. 145(C), pages 246-260.
    17. Yan, Ran & Wang, Shuaian & Du, Yuquan, 2020. "Development of a two-stage ship fuel consumption prediction and reduction model for a dry bulk ship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    18. Zhen, Lu & Wang, Shuaian & Zhuge, Dan, 2017. "Dynamic programming for optimal ship refueling decision," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 100(C), pages 63-74.
    19. Gong, Bin & An, Aimin & Shi, Yaoke & Guan, Haijiao & Jia, Wenchao & Yang, Fazhi, 2024. "An interpretable hybrid spatiotemporal fusion method for ultra-short-term photovoltaic power prediction," Energy, Elsevier, vol. 308(C).
    20. Duan, Tianyao & Guo, Huan & Qi, Xiao & Sun, Ming & Forrest, Jeffrey, 2024. "A novel information enhanced Grey Lotka–Volterra model driven by system mechanism and data for energy forecasting of WEET project in China," Energy, Elsevier, vol. 304(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:310:y:2024:i:c:s0360544224029621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.