IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v310y2024ics0360544224029931.html
   My bibliography  Save this article

Dynamic performance analysis of proton exchange membrane fuel cell in marine applications

Author

Listed:
  • Xiong, Zhe
  • Yuan, Yupeng
  • Tong, Liang
  • Li, Xiao
  • Shen, Boyang

Abstract

To investigate the dynamic characteristics of proton exchange membrane fuel cells (PEMFCs) on maritime vessels, a lumped-parameter model for the PEMFC systems was developed based on a hybrid vessel propulsion systems model. Simulations and analyses of the dynamic characteristics of PEMFCs were conducted under typical sailing conditions. The results reveal a noticeable hysteresis in the operating temperature of PEMFC stacks during vessel voyages, with a delay of about 25 s, leading to significant overvoltage in activation, ohmic, and concentration differences. Significant variations in vessel loads can cause large fluctuations in the component gas pressures in the cathode and anode flow paths within 16.6–19.8 kPa and 78.57–93.06 kPa, respectively. A comparison of different humidification levels for cathode and anode gases demonstrates that, at the same moment, as the humidification of cathode and anode gases increases from 20 % to 100 %, the water content in the proton membrane increases from 2.29 to 13.47, the ohmic impedance decreases from 1.35 mΩ/cm2 to 0.174 mΩ/cm2, and the overshoot of the fuel cell voltage decreases. The output delay decreases from 25 s to 8 s, enhancing overall fuel cell performance. These findings are significant for optimizing the design, performance, and real-time control of marine PEMFC systems.

Suggested Citation

  • Xiong, Zhe & Yuan, Yupeng & Tong, Liang & Li, Xiao & Shen, Boyang, 2024. "Dynamic performance analysis of proton exchange membrane fuel cell in marine applications," Energy, Elsevier, vol. 310(C).
  • Handle: RePEc:eee:energy:v:310:y:2024:i:c:s0360544224029931
    DOI: 10.1016/j.energy.2024.133218
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224029931
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133218?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tsai, Shang-Wen & Chen, Yong-Song, 2017. "A mathematical model to study the energy efficiency of a proton exchange membrane fuel cell with a dead-ended anode," Applied Energy, Elsevier, vol. 188(C), pages 151-159.
    2. Abdin, Z. & Webb, C.J. & Gray, E.MacA., 2016. "PEM fuel cell model and simulation in Matlab–Simulink based on physical parameters," Energy, Elsevier, vol. 116(P1), pages 1131-1144.
    3. Luo, Zongkai & Chen, Ke & Zou, Guofu & Deng, Qihao & He, Dandi & Xiong, Zhongzhuang & Chen, Wenshang & Chen, Ben, 2024. "Dynamic response characteristics and water-gas-heat synergistic transport mechanism of proton exchange membrane fuel cell during transient loading," Energy, Elsevier, vol. 302(C).
    4. Yuan, Yupeng & Wang, Jixiang & Yan, Xinping & Shen, Boyang & Long, Teng, 2020. "A review of multi-energy hybrid power system for ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Igourzal, Ayoub & Auger, François & Olivier, Jean-Christophe & Retière, Clément, 2024. "Electrical, thermal and degradation modelling of PEMFCs for naval applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 224(PA), pages 34-49.
    2. Sun, Xiaojun & Yao, Chong & Song, Enzhe & Yang, Qidong & Yang, Xuchang, 2022. "Optimal control of transient processes in marine hybrid propulsion systems: Modeling, optimization and performance enhancement," Applied Energy, Elsevier, vol. 321(C).
    3. Ding, Hongbing & Zhang, Panpan & Dong, Yuanyuan & Yang, Yan, 2024. "Optimization of hydrogen recirculation ejector for proton-exchange membrane fuel cells (PEMFC) systems considering non-equilibrium condensation," Renewable Energy, Elsevier, vol. 237(PC).
    4. Xu, Shuhui & Wang, Yong & Wang, Zhi, 2019. "Parameter estimation of proton exchange membrane fuel cells using eagle strategy based on JAYA algorithm and Nelder-Mead simplex method," Energy, Elsevier, vol. 173(C), pages 457-467.
    5. Pei, Pucheng & Jia, Xiaoning & Xu, Huachi & Li, Pengcheng & Wu, Ziyao & Li, Yuehua & Ren, Peng & Chen, Dongfang & Huang, Shangwei, 2018. "The recovery mechanism of proton exchange membrane fuel cell in micro-current operation," Applied Energy, Elsevier, vol. 226(C), pages 1-9.
    6. Zhao, Jian & Ozden, Adnan & Shahgaldi, Samaneh & Alaefour, Ibrahim E. & Li, Xianguo & Hamdullahpur, Feridun, 2018. "Effect of Pt loading and catalyst type on the pore structure of porous electrodes in polymer electrolyte membrane (PEM) fuel cells," Energy, Elsevier, vol. 150(C), pages 69-76.
    7. Zou, Wei & Froning, Dieter & Shi, Yan & Lehnert, Werner, 2021. "Working zone for a least-squares support vector machine for modeling polymer electrolyte fuel cell voltage," Applied Energy, Elsevier, vol. 283(C).
    8. Nie, Pu-Yan & Wang, Chan & Yang, Yon-Cong, 2017. "Comparison of energy efficiency subsidies under market power," Energy Policy, Elsevier, vol. 110(C), pages 144-149.
    9. Pan, Mingzhang & Pan, Chengjie & Li, Chao & Zhao, Jian, 2021. "A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    10. Moazeni, Faegheh & Khazaei, Javad, 2020. "Electrochemical optimization and small-signal analysis of grid-connected polymer electrolyte membrane (PEM) fuel cells for renewable energy integration," Renewable Energy, Elsevier, vol. 155(C), pages 848-861.
    11. Dashti, Isar & Asghari, Saeed & Goudarzi, Mohammad & Meyer, Quentin & Mehrabani-Zeinabad, Arjomand & Brett, Dan J.L., 2019. "Optimization of the performance, operation conditions and purge rate for a dead-ended anode proton exchange membrane fuel cell using an analytical model," Energy, Elsevier, vol. 179(C), pages 173-185.
    12. Guarnieri, Massimo & Bovo, Angelo & Zatta, Nicolò & Trovò, Andrea, 2024. "Design, construction and operation of a special electric vessel for water-city utilities service," Energy, Elsevier, vol. 309(C).
    13. Akira Nishimura & Kyohei Toyoda & Yuya Kojima & Syogo Ito & Eric Hu, 2021. "Numerical Simulation on Impacts of Thickness of Nafion Series Membranes and Relative Humidity on PEMFC Operated at 363 K and 373 K," Energies, MDPI, vol. 14(24), pages 1-24, December.
    14. Wang, Zhuang & Chen, Li & Wang, Bin & Huang, Lianzhong & Wang, Kai & Ma, Ranqi, 2023. "Integrated optimization of speed schedule and energy management for a hybrid electric cruise ship considering environmental factors," Energy, Elsevier, vol. 282(C).
    15. Arne L. Lazar & Swantje C. Konradt & Hermann Rottengruber, 2019. "Open-Source Dynamic Matlab/Simulink 1D Proton Exchange Membrane Fuel Cell Model," Energies, MDPI, vol. 12(18), pages 1-12, September.
    16. El-Hay, E.A. & El-Hameed, M.A. & El-Fergany, A.A., 2019. "Optimized Parameters of SOFC for steady state and transient simulations using interior search algorithm," Energy, Elsevier, vol. 166(C), pages 451-461.
    17. Ortiz-Imedio, Rafael & Caglayan, Dilara Gulcin & Ortiz, Alfredo & Heinrichs, Heidi & Robinius, Martin & Stolten, Detlef & Ortiz, Inmaculada, 2021. "Power-to-Ships: Future electricity and hydrogen demands for shipping on the Atlantic coast of Europe in 2050," Energy, Elsevier, vol. 228(C).
    18. Yang, Duo & Pan, Rui & Wang, Yujie & Chen, Zonghai, 2019. "Modeling and control of PEMFC air supply system based on T-S fuzzy theory and predictive control," Energy, Elsevier, vol. 188(C).
    19. Wang, Bowen & Deng, Hao & Jiao, Kui, 2018. "Purge strategy optimization of proton exchange membrane fuel cell with anode recirculation," Applied Energy, Elsevier, vol. 225(C), pages 1-13.
    20. Trivyza, Nikoletta L. & Rentizelas, Athanasios & Theotokatos, Gerasimos & Boulougouris, Evangelos, 2022. "Decision support methods for sustainable ship energy systems: A state-of-the-art review," Energy, Elsevier, vol. 239(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:310:y:2024:i:c:s0360544224029931. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.