IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v188y2019ics0360544219317736.html
   My bibliography  Save this article

Modeling and control of PEMFC air supply system based on T-S fuzzy theory and predictive control

Author

Listed:
  • Yang, Duo
  • Pan, Rui
  • Wang, Yujie
  • Chen, Zonghai

Abstract

The proton exchange membrane fuel cell has become the most widely used fuel cell in fuel cell vehicles. An effective and accurate control approach for its air supply system is crucial to ensure the performance and safety of the fuel cell system. In order to ensure safe and efficient operation of the air supply, this paper provides a novel modeling and control method based on Takagi-Sugeno fuzzy theory and predictive control. A local controlled autoregressive integrated moving average model for the air flow control is put forward, then the control-oriented T-S model is designed based on multi-model scheduling. The controller architecture is based on a fuzzy generalized predictive controller. The proposed controller can control the oxygen excess ratio in the ideal range and effectively suppress the fluctuation caused by the load change. In addition, an optimal control strategy is proposed aiming at avoiding the oxygen starvation and maximizing the system net power. According to the control results, the proposed method is proved to be able to accurately control the air supply at desire values. It enhances system output performance by fast response to better support the vehicle load variation, and improving the net power and system energy efficiency.

Suggested Citation

  • Yang, Duo & Pan, Rui & Wang, Yujie & Chen, Zonghai, 2019. "Modeling and control of PEMFC air supply system based on T-S fuzzy theory and predictive control," Energy, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:energy:v:188:y:2019:i:c:s0360544219317736
    DOI: 10.1016/j.energy.2019.116078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219317736
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Junye, 2015. "Barriers of scaling-up fuel cells: Cost, durability and reliability," Energy, Elsevier, vol. 80(C), pages 509-521.
    2. Bicer, Y. & Dincer, I. & Aydin, M., 2016. "Maximizing performance of fuel cell using artificial neural network approach for smart grid applications," Energy, Elsevier, vol. 116(P1), pages 1205-1217.
    3. Kheirandish, Azadeh & Motlagh, Farid & Shafiabady, Niusha & Dahari, Mahidzal & Khairi Abdul Wahab, Ahmad, 2017. "Dynamic fuzzy cognitive network approach for modelling and control of PEM fuel cell for power electric bicycle system," Applied Energy, Elsevier, vol. 202(C), pages 20-31.
    4. Neef, H.-J., 2009. "International overview of hydrogen and fuel cell research," Energy, Elsevier, vol. 34(3), pages 327-333.
    5. Barzegari, Mohammad M. & Alizadeh, Ebrahim & Pahnabi, Amir H., 2017. "Grey-box modeling and model predictive control for cascade-type PEMFC," Energy, Elsevier, vol. 127(C), pages 611-622.
    6. Abdin, Z. & Webb, C.J. & Gray, E.MacA., 2016. "PEM fuel cell model and simulation in Matlab–Simulink based on physical parameters," Energy, Elsevier, vol. 116(P1), pages 1131-1144.
    7. Yuan, Xueliang & Liu, Xin & Zuo, Jian, 2015. "The development of new energy vehicles for a sustainable future: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 298-305.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Dafeng & Wu, Qingtao & Zeng, Xiaohua & Zhang, Xuanming & Qian, Qifeng & Yang, DongPo, 2024. "Feedback-linearization decoupling based coordinated control of air supply and thermal management for vehicular fuel cell system," Energy, Elsevier, vol. 305(C).
    2. Zhang, Caizhi & Zhang, Yuqi & Wang, Lei & Deng, Xiaozhi & Liu, Yang & Zhang, Jiujun, 2023. "A health management review of proton exchange membrane fuel cell for electric vehicles: Failure mechanisms, diagnosis techniques and mitigation measures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    3. Deng, Zhihua & Chen, Qihong & Zhang, Liyan & Zhou, Keliang & Zong, Yi & Fu, Zhichao & Liu, Hao, 2021. "Data-driven reconstruction of interpretable model for air supply system of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 299(C).
    4. Zhang, Qinguo & Tong, Zheming & Tong, Shuiguang & Cheng, Zhewu, 2021. "Modeling and dynamic performance research on proton exchange membrane fuel cell system with hydrogen cycle and dead-ended anode," Energy, Elsevier, vol. 218(C).
    5. Wan, Xin & Luo, Xiong-Lin, 2020. "Economic optimization of chemical processes based on zone predictive control with redundancy variables," Energy, Elsevier, vol. 212(C).
    6. Zhang, Xin & Zhang, Chunlei & Zhang, Zhijin & Gao, Sen & Li, He, 2024. "Coordinated management of oxygen excess ratio and cathode pressure for PEMFC based on synthesis variable-gain robust predictive control," Applied Energy, Elsevier, vol. 367(C).
    7. Peng Yin & Jinzhou Chen & Hongwen He, 2023. "Control of Oxygen Excess Ratio for a PEMFC Air Supply System by Intelligent PID Methods," Sustainability, MDPI, vol. 15(11), pages 1-20, May.
    8. Hu, Haowen & Ou, Kai & Yuan, Wei-Wei, 2023. "Fused multi-model predictive control with adaptive compensation for proton exchange membrane fuel cell air supply system," Energy, Elsevier, vol. 284(C).
    9. Liu, Zhao & Chen, Huicui & Peng, Lian & Ye, Xichen & Xu, Sichen & Zhang, Tong, 2022. "Feedforward-decoupled closed-loop fuzzy proportion-integral-derivative control of air supply system of proton exchange membrane fuel cell," Energy, Elsevier, vol. 240(C).
    10. Chen, Xi & Gu, Bin & Feng, Wentao & Tan, Jingying & Kong, Xiangzhong & Li, Shi & Chen, Yiyu & Wan, Zhongmin, 2024. "Research on control strategy of PEMFC air supply system for power and efficiency improvement," Energy, Elsevier, vol. 304(C).
    11. Vu, Hoang Nghia & Truong Le Tri, Dat & Nguyen, Huu Linh & Kim, Younghyeon & Yu, Sangseok, 2023. "Multifunctional bypass valve for water management and surge protection in a proton-exchange membrane fuel cell supply-air system," Energy, Elsevier, vol. 278(C).
    12. Chen, Huicui & Liu, Zhao & Ye, Xichen & Yi, Liu & Xu, Sichen & Zhang, Tong, 2022. "Air flow and pressure optimization for air supply in proton exchange membrane fuel cell system," Energy, Elsevier, vol. 238(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    2. Xu, Liangfei & Fang, Chuan & Li, Jianqiu & Ouyang, Minggao & Lehnert, Werner, 2018. "Nonlinear dynamic mechanism modeling of a polymer electrolyte membrane fuel cell with dead-ended anode considering mass transport and actuator properties," Applied Energy, Elsevier, vol. 230(C), pages 106-121.
    3. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    4. Díaz, Manuel Antonio & Iranzo, Alfredo & Rosa, Felipe & Isorna, Fernando & López, Eduardo & Bolivar, Juan Pedro, 2015. "Effect of carbon dioxide on the contamination of low temperature and high temperature PEM (polymer electrolyte membrane) fuel cells. Influence of temperature, relative humidity and analysis of regener," Energy, Elsevier, vol. 90(P1), pages 299-309.
    5. Sankar, K. & Thakre, Niraj & Singh, Sumit Mohan & Jana, Amiya K., 2017. "Sliding mode observer based nonlinear control of a PEMFC integrated with a methanol reformer," Energy, Elsevier, vol. 139(C), pages 1126-1143.
    6. Fan, Mei-Qiang & Liu, Shu-sheng & Zhang, Yao & Zhang, Jian & Sun, Li-Xian & Xu, Fen, 2010. "Superior hydrogen storage properties of MgH2–10 wt.% TiC composite," Energy, Elsevier, vol. 35(8), pages 3417-3421.
    7. Chen, Yufeng & Ni, Liangfu & Liu, Kelong, 2021. "Does China's new energy vehicle industry innovate efficiently? A three-stage dynamic network slacks-based measure approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    8. Zheng Huang & Laisuo Su & Yunjie Yang & Linsong Gao & Xinyu Liu & Heng Huang & Yubai Li & Yongchen Song, 2023. "Three-Dimensional Simulation on the Effects of Different Parameters and Pt Loading on the Long-Term Performance of Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    9. Igourzal, Ayoub & Auger, François & Olivier, Jean-Christophe & Retière, Clément, 2024. "Electrical, thermal and degradation modelling of PEMFCs for naval applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 224(PA), pages 34-49.
    10. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    11. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    12. Alves, Luís & Pereira, Vítor & Lagarteira, Tiago & Mendes, Adélio, 2021. "Catalytic methane decomposition to boost the energy transition: Scientific and technological advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    13. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    14. Ruffini, Eleonora & Wei, Max, 2018. "Future costs of fuel cell electric vehicles in California using a learning rate approach," Energy, Elsevier, vol. 150(C), pages 329-341.
    15. Rabiee, Abdorreza & Khorramdel, Hossein & Aghaei, Jamshid, 2013. "A review of energy storage systems in microgrids with wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 316-326.
    16. Najmi, Aezid-Ul-Hassan & Anyanwu, Ikechukwu S. & Xie, Xu & Liu, Zhi & Jiao, Kui, 2021. "Experimental investigation and optimization of proton exchange membrane fuel cell using different flow fields," Energy, Elsevier, vol. 217(C).
    17. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.
    18. Yuan, Yi & Chen, Li & Lyu, Xingbao & Ning, Wenjing & Liu, Wenqi & Tao, Wen-Quan, 2024. "Modeling and optimization of a residential PEMFC-based CHP system under different operating modes," Applied Energy, Elsevier, vol. 353(PA).
    19. Zhaohua Wang & Xiaoyang Dong, 2016. "Determinants and policy implications of residents’ new energy vehicle purchases: the evidence from China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 155-173, May.
    20. Oleg Bazaluk & Valerii Havrysh & Vitalii Nitsenko & Tomas Baležentis & Dalia Streimikiene & Elena A. Tarkhanova, 2020. "Assessment of Green Methanol Production Potential and Related Economic and Environmental Benefits: The Case of China," Energies, MDPI, vol. 13(12), pages 1-25, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:188:y:2019:i:c:s0360544219317736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.