IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v308y2024ics0360544224028287.html
   My bibliography  Save this article

Investigation on the thermal behavior of thermal management system for battery pack with heat pipe based on multiphysics coupling model

Author

Listed:
  • Zhang, Weitao
  • Sun, Qichao
  • Zhou, Xin
  • Wu, Lianying
  • Hu, Yangdong

Abstract

A well-designed battery thermal management system (BTMS) is crucial for maintaining battery life and ensuring safety in large capacity electrochemical energy storage systems. Experimental and numerical investigation have been conducted on the BTMS with heat pipe (HP) cooling. A multiphysics coupling model has been established for predicting the electrical and thermal behavior of BTMS, including HP models, electrochemical models, and computational fluid dynamics models. The model's reliability has been verified through a comprehensive set of experiments. The results show that the optimal heat dissipation effect can be achieved when the condensers of HP are distributed on both sides of the battery pack and arranged triangularly. With increasing inlet coolant velocity, the maximum temperature decreases, but the temperature uniformity deteriorates. As the inlet air temperature decreases, both the maximum temperature and the temperature uniformity decrease. The air-cooling HP-BTMS is only suitable for low discharge rates, while the liquid cooling HP-BTMS can meet the control requirements of the maximum temperature and uniformity at 3C discharge. The model has practicality in structures design and control strategies development for HP-BTMS.

Suggested Citation

  • Zhang, Weitao & Sun, Qichao & Zhou, Xin & Wu, Lianying & Hu, Yangdong, 2024. "Investigation on the thermal behavior of thermal management system for battery pack with heat pipe based on multiphysics coupling model," Energy, Elsevier, vol. 308(C).
  • Handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224028287
    DOI: 10.1016/j.energy.2024.133053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224028287
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224028287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.