IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v308y2024ics0360544224028093.html
   My bibliography  Save this article

Interpretable machine learning-based prediction and analysis of supercritical fluid heat transfer characteristics at different boundary conditions

Author

Listed:
  • Li, Haozhe
  • Song, Meiqi
  • Liu, Xiaojing

Abstract

The study of the heat transfer characteristics of supercritical fluids is crucial for the safe and economical operation of supercritical energy systems. This study presents a new method to study the heat transfer characteristics of supercritical fluids, employing interpretable machine learning. Two back propagation neural network models are proposed for the prediction of heat transfer to supercritical fluid for the cases with given heat flux and given wall temperature, respectively. The particle swarm optimization algorithm was employed to search for the optimal hyperparameters, and the resulting accuracy was evaluated in comparison with that of the traditional empirical correlation and a number of machine learning models. Combining the SHAP interpretable algorithm with prediction models, the supercritical heat transfer mechanism is explored from the perspective of global and local prediction behaviors based on explainable models. The results demonstrate that the average error of two established neural network models on the test set is 0.47 % and 0.69 %. Furthermore, for vertical upward flow, the buoyancy and acceleration effects are of greater feature importance in heat transfer deterioration. They are the primary factors contributing to heat transfer deterioration behavior. The research method proposed in this study has certain reference significance for further study of the heat transfer characteristics of supercritical fluids.

Suggested Citation

  • Li, Haozhe & Song, Meiqi & Liu, Xiaojing, 2024. "Interpretable machine learning-based prediction and analysis of supercritical fluid heat transfer characteristics at different boundary conditions," Energy, Elsevier, vol. 308(C).
  • Handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224028093
    DOI: 10.1016/j.energy.2024.133035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224028093
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ge, Xueli & Zhang, Zhongxiao & Fan, Haojie & Zhang, Jian & Bi, Degui, 2019. "Unsteady-state heat transfer characteristics of spiral water wall tube in advanced-ultra-supercritical boilers from experiments and distributed parameter model," Energy, Elsevier, vol. 189(C).
    2. Ma, Ning & Bu, Zhengkun & Fu, Yanan & Hong, Wenpeng & Li, Haoran & Niu, Xiaojuan, 2023. "An operation strategy and off-design performance for supercritical brayton cycle using CO2-propane mixture in a direct-heated solar power tower plant," Energy, Elsevier, vol. 278(PA).
    3. Xiao, Xiao & Zhang, Xuan & Song, Meiqi & Liu, Xiaojing & Huang, Qingyu, 2024. "NPP accident prevention: Integrated neural network for coupled multivariate time series prediction based on PSO and its application under uncertainty analysis for NPP data," Energy, Elsevier, vol. 305(C).
    4. Cheng, Liangyuan & Xu, Jinliang & Cao, Wenxuan & Zhou, Kaiping & Liu, Guanglin, 2024. "Supercritical carbon dioxide heat transfer in horizontal tube based on the Froude number analysis," Energy, Elsevier, vol. 294(C).
    5. Han, Hongbo & Wang, Renting & Bao, Zewei, 2024. "Effect of secondary flow and secondary reactions on pyrolysis and heat transfer of supercritical hydrocarbon aviation fuel in a U-bend tube," Energy, Elsevier, vol. 292(C).
    6. Li, Xinyu & Qin, Zheng & Dong, Keyong & Wang, Lintao & Lin, Zhimin, 2023. "Experimental study of the startup of a supercritical CO2 recompression power system," Energy, Elsevier, vol. 284(C).
    7. Knez, Ž. & Markočič, E. & Leitgeb, M. & Primožič, M. & Knez Hrnčič, M. & Škerget, M., 2014. "Industrial applications of supercritical fluids: A review," Energy, Elsevier, vol. 77(C), pages 235-243.
    8. Nalabala, Madhavaiah & Dinda, Srikanta, 2024. "Supercritical pyrolysis of in-house developed endothermic fuel and estimation of coke and endothermicity," Energy, Elsevier, vol. 289(C).
    9. Wang, Yanjuan & Li, Yi & Zhu, Zheng & Chen, Zhewen & Xu, Jinliang, 2024. "Thermal-hydraulic-structural analysis and optimization of supercritical CO2 solar tower receiver," Energy, Elsevier, vol. 293(C).
    10. Khoshvaght-Aliabadi, Morteza & Ghodrati, Parvaneh & Mahian, Omid & Kang, Yong Tae, 2024. "CFD study of rib-enhanced printed circuit heat exchangers for precoolers in solar power plants' supercritical CO2 cycle," Energy, Elsevier, vol. 292(C).
    11. Liu, Yunxia & Zhao, Yuanyang & Yang, Qichao & Liu, Guangbin & Li, Liansheng, 2024. "Research on compression process and compressors in supercritical carbon dioxide power cycle systems: A review," Energy, Elsevier, vol. 297(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kravanja, Gregor & Zajc, Gašper & Knez, Željko & Škerget, Mojca & Marčič, Simon & Knez, Maša H., 2018. "Heat transfer performance of CO2, ethane and their azeotropic mixture under supercritical conditions," Energy, Elsevier, vol. 152(C), pages 190-201.
    2. Li, Zhen & Lu, Daogang & Lin, Manjiao & Cao, Qiong, 2024. "Investigation of the thermal-hydraulic characteristics of SCO2 in a modified hybrid airfoil channel," Energy, Elsevier, vol. 308(C).
    3. Zhang, Xiaogang & Ranjith, P.G. & Ranathunga, A.S., 2019. "Sub- and super-critical carbon dioxide flow variations in large high-rank coal specimen: An experimental study," Energy, Elsevier, vol. 181(C), pages 148-161.
    4. Zhu, Jianlu & Xie, Naiya & Miao, Qing & Li, Zihe & Hu, Qihui & Yan, Feng & Li, Yuxing, 2024. "Simulation of boost path and phase control method in supercritical CO2 pipeline commissioning process," Renewable Energy, Elsevier, vol. 231(C).
    5. Li, Yuzhe & Zhang, Enbo & Feng, Jiaqi & Zhang, Xu & Yue, Liangyuan & Bai, Bofeng, 2024. "Reduced-dimensional prediction method for the axial aerodynamic forces in the off-design operation of near-critical CO2 centrifugal compressors," Energy, Elsevier, vol. 302(C).
    6. Cheng, Liangyuan & Xu, Jinliang, 2024. "Experimental investigation of non-uniform heating effect on flow and heat transfer of supercritical carbon dioxide:An application to solar parabolic trough collector," Renewable Energy, Elsevier, vol. 236(C).
    7. Cheng, Kunlin & Yu, Jianchi & Dang, Chaolei & Qin, Jiang & Jing, Wuxing, 2024. "Performance comparison between closed-Brayton-cycle power generation systems using supercritical carbon dioxide and helium–xenon mixture at ultra-high turbine inlet temperatures on hypersonic vehicles," Energy, Elsevier, vol. 293(C).
    8. Bian, Xingyan & Wang, Xuan & Wang, Jingyu & Wang, Rui & Zhang, Xuanang & Tian, Hua & Shu, Gequn, 2024. "Transcritical CO2 mixture power for nuclear plant application: Concept and thermodynamic optimization," Energy, Elsevier, vol. 309(C).
    9. Qu, Jinbo & Feng, Yongming & Wu, Binyang & Zhu, Yuanqing & Wang, Jiaqi, 2024. "Understanding the thermodynamic behaviors of integrated system including solid oxide fuel cell and Carnot battery based on finite time thermodynamics," Applied Energy, Elsevier, vol. 372(C).
    10. Yang, Zimu & Jiang, Hongsheng & Zhuge, Weilin & Qian, Yuping & Zhang, Yangjun, 2024. "Design of a partial discharge shrouded impeller for the centrifugal compressor of supercritical carbon dioxide power cycles," Energy, Elsevier, vol. 307(C).
    11. Liu, Yunxia & Zhao, Yuanyang & Yang, Qichao & Liu, Guangbin & Li, Liansheng, 2024. "Research on compression process and compressors in supercritical carbon dioxide power cycle systems: A review," Energy, Elsevier, vol. 297(C).
    12. Hämäläinen, Henri & Ruusunen, Mika, 2022. "Identification of a supercritical fluid extraction process for modelling the energy consumption," Energy, Elsevier, vol. 252(C).
    13. Löffler, Michael, 2017. "Batch Processes in Heat Engines," Energy, Elsevier, vol. 125(C), pages 788-794.
    14. Xu, Jialing & Rong, Siqi & Sun, Jingli & Peng, Zhiyong & Jin, Hui & Guo, Liejin & Zhang, Xiang & Zhou, Teng, 2022. "Optimal design of non-isothermal supercritical water gasification reactor: From biomass to hydrogen," Energy, Elsevier, vol. 244(PB).
    15. Zima, Wiesław & Grądziel, Sławomir & Cebula, Artur & Rerak, Monika & Kozak-Jagieła, Ewa & Pilarczyk, Marcin, 2023. "Mathematical model of a power boiler operation under rapid thermal load changes," Energy, Elsevier, vol. 263(PC).
    16. Sarkar, Jahar, 2015. "Review and future trends of supercritical CO2 Rankine cycle for low-grade heat conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 434-451.
    17. Torrentes-Espinoza, G. & Miranda, B.C. & Vega-Baudrit, J. & Mata-Segreda, Julio F., 2017. "Castor oil (Ricinus communis) supercritical methanolysis," Energy, Elsevier, vol. 140(P1), pages 426-435.
    18. Khoshvaght-Aliabadi, M. & Ghodrati, P. & Rashidi, M.M. & Kang, Y.T., 2024. "Structural analysis and optimization of flattened tube gas cooler for transcritical CO2 heat pump systems," Energy, Elsevier, vol. 307(C).
    19. Liu, Fang-Jing & Gasem, Khaled A.M. & Tang, Mingchen & Xu, Bang & Huang, Zaixing & Zhang, Riguang & Fan, Maohong, 2020. "Enhanced liquid tar production as fuels/chemicals from Powder River Basin coal through CaO catalyzed stepwise degradation in eco-friendly supercritical CO2/ethanol," Energy, Elsevier, vol. 191(C).
    20. Doninelli, M. & Morosini, E. & Di Marcoberardino, G. & Invernizzi, C.M. & Iora, P. & Riva, M. & Stringari, P. & Manzolini, G., 2024. "Experimental investigation of the CO2+SiCl4 mixture as innovative working fluid for power cycles: Bubble points and liquid density measurements," Energy, Elsevier, vol. 299(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224028093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.