IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v284y2023ics0360544223019321.html
   My bibliography  Save this article

Experimental study of the startup of a supercritical CO2 recompression power system

Author

Listed:
  • Li, Xinyu
  • Qin, Zheng
  • Dong, Keyong
  • Wang, Lintao
  • Lin, Zhimin

Abstract

The supercritical CO2 Brayton cycle is a revolutionary power conversion technology. However, due to the lack of experimental research, the cycle's dynamic characteristics and control rules are still unclear. This study presents experimental research of a 300 kW supercritical CO2 recompression cycle power system based on two integrated high-speed turbo-alternator-compressor units, and characteristics of dynamic control, flow transition, and thermal inertia of the cycle are presented. The difficulty of generator startup increases with initial pressure, therefore a low-pressure startup strategy is proposed and verified. During startup, the closing time of turbine bypass value and control performance of the main compressor inlet temperature are found to have great influence on the stable operation of the cycle, and relevant control strategies are verified and discussed. The study also presents the existence, transformation mechanism, and flow characteristics of four flow modes during the startup of recompression cycle. These findings are of great help to judge the flow pattern of CO2 in the complex piping system and improve the transparency and safety level of system operation. Test results also show that despite the large thermal inertia, the load of recompression cycle can be quickly adjusted.

Suggested Citation

  • Li, Xinyu & Qin, Zheng & Dong, Keyong & Wang, Lintao & Lin, Zhimin, 2023. "Experimental study of the startup of a supercritical CO2 recompression power system," Energy, Elsevier, vol. 284(C).
  • Handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223019321
    DOI: 10.1016/j.energy.2023.128538
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223019321
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128538?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schöffer, S.I. & Klein, S.A. & Aravind, P.V. & Pecnik, R., 2021. "A solid oxide fuel cell- supercritical carbon dioxide Brayton cycle hybrid system," Applied Energy, Elsevier, vol. 283(C).
    2. Binotti, Marco & Astolfi, Marco & Campanari, Stefano & Manzolini, Giampaolo & Silva, Paolo, 2017. "Preliminary assessment of sCO2 cycles for power generation in CSP solar tower plants," Applied Energy, Elsevier, vol. 204(C), pages 1007-1017.
    3. Crespi, Francesco & Gavagnin, Giacomo & Sánchez, David & Martínez, Gonzalo S., 2017. "Supercritical carbon dioxide cycles for power generation: A review," Applied Energy, Elsevier, vol. 195(C), pages 152-183.
    4. Li, Hongzhi & Zhang, Yifan & Yao, Mingyu & Yang, Yu & Han, Wanlong & Bai, Wengang, 2019. "Design assessment of a 5 MW fossil-fired supercritical CO2 power cycle pilot loop," Energy, Elsevier, vol. 174(C), pages 792-804.
    5. Liese, Eric & Albright, Jacob & Zitney, Stephen A., 2020. "Startup, shutdown, and load-following simulations of a 10 MWe supercritical CO2 recompression closed Brayton cycle," Applied Energy, Elsevier, vol. 277(C).
    6. Luu, Minh Tri & Milani, Dia & McNaughton, Robbie & Abbas, Ali, 2017. "Dynamic modelling and start-up operation of a solar-assisted recompression supercritical CO2 Brayton power cycle," Applied Energy, Elsevier, vol. 199(C), pages 247-263.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qu, Jinbo & Feng, Yongming & Wu, Binyang & Zhu, Yuanqing & Wang, Jiaqi, 2024. "Understanding the thermodynamic behaviors of integrated system including solid oxide fuel cell and Carnot battery based on finite time thermodynamics," Applied Energy, Elsevier, vol. 372(C).
    2. Li, Yuzhe & Zhang, Enbo & Feng, Jiaqi & Zhang, Xu & Yue, Liangyuan & Bai, Bofeng, 2024. "Reduced-dimensional prediction method for the axial aerodynamic forces in the off-design operation of near-critical CO2 centrifugal compressors," Energy, Elsevier, vol. 302(C).
    3. Liao, Haoyang & Wang, Xianbo & Xie, Lin & Lu, Ruibo & Zhao, Fulong & Tan, Sichao & Gao, Puzhen & Tian, Ruifeng, 2024. "Thermal-hydraulic characteristics analysis of unprotected accident and protection control strategy for helium-xenon cooled reactor system," Energy, Elsevier, vol. 302(C).
    4. Liu, Yunxia & Zhao, Yuanyang & Yang, Qichao & Liu, Guangbin & Li, Liansheng, 2024. "Research on compression process and compressors in supercritical carbon dioxide power cycle systems: A review," Energy, Elsevier, vol. 297(C).
    5. Cheng, Kunlin & Yu, Jianchi & Dang, Chaolei & Qin, Jiang & Jing, Wuxing, 2024. "Performance comparison between closed-Brayton-cycle power generation systems using supercritical carbon dioxide and helium–xenon mixture at ultra-high turbine inlet temperatures on hypersonic vehicles," Energy, Elsevier, vol. 293(C).
    6. Zhu, Jianlu & Xie, Naiya & Miao, Qing & Li, Zihe & Hu, Qihui & Yan, Feng & Li, Yuxing, 2024. "Simulation of boost path and phase control method in supercritical CO2 pipeline commissioning process," Renewable Energy, Elsevier, vol. 231(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Tingyu & Liu, Chao & Wang, Xurong & Wang, Shukun & Xu, Xiaoxiao & Li, Qibin & Li, Xiaoxiao, 2022. "Life cycle assessment of the solar thermal power plant integrated with air-cooled supercritical CO2 Brayton cycle," Renewable Energy, Elsevier, vol. 182(C), pages 119-133.
    2. Wang, Xurong & Li, Xiaoxiao & Li, Qibin & Liu, Lang & Liu, Chao, 2020. "Performance of a solar thermal power plant with direct air-cooled supercritical carbon dioxide Brayton cycle under off-design conditions," Applied Energy, Elsevier, vol. 261(C).
    3. Yang, Jingze & Yang, Zhen & Duan, Yuanyuan, 2022. "A review on integrated design and off-design operation of solar power tower system with S–CO2 Brayton cycle," Energy, Elsevier, vol. 246(C).
    4. Yu, Aofang & Xing, Lingli & Su, Wen & Liu, Pei, 2023. "State-of-the-art review on the CO2 combined power and cooling system: System configuration, modeling and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    5. Marchionni, Matteo & Bianchi, Giuseppe & Tassou, Savvas A., 2018. "Techno-economic assessment of Joule-Brayton cycle architectures for heat to power conversion from high-grade heat sources using CO2 in the supercritical state," Energy, Elsevier, vol. 148(C), pages 1140-1152.
    6. Yang, Jingze & Yang, Zhen & Duan, Yuanyuan, 2020. "Off-design performance of a supercritical CO2 Brayton cycle integrated with a solar power tower system," Energy, Elsevier, vol. 201(C).
    7. Arias, I. & Cardemil, J. & Zarza, E. & Valenzuela, L. & Escobar, R., 2022. "Latest developments, assessments and research trends for next generation of concentrated solar power plants using liquid heat transfer fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Xu, Zhen & Liu, Xinxin & Xie, Yingchun, 2023. "Off-design performances of a dry-cooled supercritical recompression Brayton cycle using CO2–H2S as working fluid," Energy, Elsevier, vol. 276(C).
    9. Battisti, F.G. & de Araujo Passos, L.A. & da Silva, A.K., 2022. "Economic and environmental assessment of a CO2 solar-powered plant with packed-bed thermal energy storage," Applied Energy, Elsevier, vol. 314(C).
    10. Sleiti, Ahmad K. & Al-Ammari, Wahib & Ahmed, Samer & Kapat, Jayanta, 2021. "Direct-fired oxy-combustion supercritical-CO2 power cycle with novel preheating configurations -thermodynamic and exergoeconomic analyses," Energy, Elsevier, vol. 226(C).
    11. Sadeghi, Mohsen & Seyed Mahmoudi, Seyed Mohammad & Rosen, Marc A., 2022. "Thermoeconomic analysis of two solid oxide fuel cell based cogeneration plants integrated with simple or modified supercritical CO2 Brayton cycles: A comparative study," Energy, Elsevier, vol. 259(C).
    12. Ehsan, M. Monjurul & Guan, Zhiqiang & Gurgenci, Hal & Klimenko, Alexander, 2020. "Feasibility of dry cooling in supercritical CO2 power cycle in concentrated solar power application: Review and a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    13. Xu, Cheng & Zhang, Qiang & Yang, Zhiping & Li, Xiaosa & Xu, Gang & Yang, Yongping, 2018. "An improved supercritical coal-fired power generation system incorporating a supplementary supercritical CO2 cycle," Applied Energy, Elsevier, vol. 231(C), pages 1319-1329.
    14. du Sart, Colin Francois & Rousseau, Pieter & Laubscher, Ryno, 2024. "Comparing the partial cooling and recompression cycles for a 50 MWe sCO2 CSP plant using detailed recuperator models," Renewable Energy, Elsevier, vol. 222(C).
    15. Liu, Xuejiao & Zhong, Wenqi & Li, Pingjiao & Xiang, Jun & Liu, Guoyao, 2019. "Design and performance analysis of coal-fired fluidized bed for supercritical CO2 power cycle," Energy, Elsevier, vol. 176(C), pages 468-478.
    16. Muhammed Saeed & Abdallah S. Berrouk & Munendra Pal Singh & Khaled Alawadhi & Muhammad Salman Siddiqui, 2021. "Analysis of Supercritical CO 2 Cycle Using Zigzag Channel Pre-Cooler: A Design Optimization Study Based on Deep Neural Network," Energies, MDPI, vol. 14(19), pages 1-28, September.
    17. Tesio, U. & Guelpa, E. & Verda, V., 2022. "Comparison of sCO2 and He Brayton cycles integration in a Calcium-Looping for Concentrated Solar Power," Energy, Elsevier, vol. 247(C).
    18. Miguel Ángel Reyes-Belmonte, 2020. "A Bibliometric Study on Integrated Solar Combined Cycles (ISCC), Trends and Future Based on Data Analytics Tools," Sustainability, MDPI, vol. 12(19), pages 1-29, October.
    19. Zhang, Yifan & Li, Hongzhi & Li, Kailun & Yang, Yu & Zhou, Yujia & Zhang, Xuwei & Xu, Ruina & Zhuge, Weilin & Lei, Xianliang & Dan, Guangju, 2022. "Dynamic characteristics and control strategies of the supercritical CO2 Brayton cycle tailored for the new generation concentrating solar power," Applied Energy, Elsevier, vol. 328(C).
    20. Kunniyoor, Vijayaraj & Singh, Punit & Nadella, Karthik, 2020. "Value of closed-cycle gas turbines with design assessment," Applied Energy, Elsevier, vol. 269(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223019321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.