IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v292y2024ics0360544224001890.html
   My bibliography  Save this article

CFD study of rib-enhanced printed circuit heat exchangers for precoolers in solar power plants' supercritical CO2 cycle

Author

Listed:
  • Khoshvaght-Aliabadi, Morteza
  • Ghodrati, Parvaneh
  • Mahian, Omid
  • Kang, Yong Tae

Abstract

The modification of printed circuit heat exchangers through extended surface areas is a relatively underexplored topic, especially when considering their application in conjunction with precoolers in supercritical CO2 cycles. This study evaluates the response of a precooler by incorporating various configurations of integral and interrupted ribs, with the primary objective of identifying an optimized ribs combination under different operating conditions. The results demonstrate that ribs enhance secondary swirl flows, contributing to an increase in heat transfer levels in the supercritical CO2 flow. However, ribs do increase flow resistance, necessitating the careful selection of the optimal rib combination. The use of non-uniform patterns of interrupted ribs has been identified as the most feasible approach. By reducing the rib length and the distance between ribs at the upstream of supercritical CO2 and water flows, the performance of the precooler is notably enhanced. No matter the operating condition, cases with shorter rib lengths or smaller rib-to-rib distances at the beginning of both fluid paths consistently yield the best performance. Implementing these configurations in the precooler, the comprehensive performance index can reach approximately 1.2. This study contributes to enhancing efficiency and improving the compactness of large-scale solar power plants utilizing the supercritical CO2 cycle.

Suggested Citation

  • Khoshvaght-Aliabadi, Morteza & Ghodrati, Parvaneh & Mahian, Omid & Kang, Yong Tae, 2024. "CFD study of rib-enhanced printed circuit heat exchangers for precoolers in solar power plants' supercritical CO2 cycle," Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224001890
    DOI: 10.1016/j.energy.2024.130418
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224001890
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130418?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Qi & Flamant, Gilles & Yuan, Xigang & Neveu, Pierre & Luo, Lingai, 2011. "Compact heat exchangers: A review and future applications for a new generation of high temperature solar receivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4855-4875.
    2. Chang, Hongliang & Han, Zeran & Li, Xionghui & Ma, Ting & Wang, Qiuwang, 2022. "Experimental investigation on heat transfer performance based on average thermal-resistance ratio for supercritical carbon dioxide in asymmetric airfoil-fin printed circuit heat exchanger," Energy, Elsevier, vol. 254(PB).
    3. Kumar, Nitesh & Basu, Dipankar N., 2023. "Thermalhydraulic assessment and design optimization of incorporating flow obstructors in a supercritical minichannel heat sink," Applied Energy, Elsevier, vol. 349(C).
    4. Xu, Zirui & Chen, Wangnan & Lian, Jie & Yang, Xiongwei & Wang, Qiuwang & Chen, Yitung & Ma, Ting, 2022. "Study on mechanical stress of semicircular and rectangular channels in printed circuit heat exchangers," Energy, Elsevier, vol. 238(PA).
    5. Khoshvaght-Aliabadi, Morteza & Ghodrati, Parvaneh & Kang, Yong Tae, 2023. "Optimal combination of converging and diverging minichannels in PCHE as precooler under diverse operating conditions of supercritical CO2," Energy, Elsevier, vol. 272(C).
    6. Fu, Qianmei & Ding, Jing & Lao, Jiewei & Wang, Weilong & Lu, Jianfeng, 2019. "Thermal-hydraulic performance of printed circuit heat exchanger with supercritical carbon dioxide airfoil fin passage and molten salt straight passage," Applied Energy, Elsevier, vol. 247(C), pages 594-604.
    7. Han, Zengxiao & Guo, Jiangfeng & Huai, Xiulan, 2023. "Theoretical analysis of a novel PCHE with enhanced rib structures for high-power supercritical CO2 Brayton cycle system based on solar energy," Energy, Elsevier, vol. 270(C).
    8. Liu, Bohan & Lu, Mingjian & Shui, Bo & Sun, Yuwei & Wei, Wei, 2022. "Thermal-hydraulic performance analysis of printed circuit heat exchanger precooler in the Brayton cycle for supercritical CO2 waste heat recovery," Applied Energy, Elsevier, vol. 305(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khoshvaght-Aliabadi, M. & Ghodrati, P. & Rashidi, M.M. & Kang, Y.T., 2024. "Structural analysis and optimization of flattened tube gas cooler for transcritical CO2 heat pump systems," Energy, Elsevier, vol. 307(C).
    2. Yang, Zimu & Jiang, Hongsheng & Zhuge, Weilin & Qian, Yuping & Zhang, Yangjun, 2024. "Design of a partial discharge shrouded impeller for the centrifugal compressor of supercritical carbon dioxide power cycles," Energy, Elsevier, vol. 307(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhen & Lu, Daogang & Wang, Zhichao & Cao, Qiong, 2023. "Analysis on flow and heat transfer performance of SCO2 in airfoil channels with different fin angles of attack," Energy, Elsevier, vol. 282(C).
    2. Khoshvaght-Aliabadi, Morteza & Ghodrati, Parvaneh & Mahian, Omid & Kang, Yong Tae, 2024. "Performance evaluation of non-uniform twisted designs in precooler of supercritical CO2 power cycle," Energy, Elsevier, vol. 292(C).
    3. Khoshvaght-Aliabadi, M. & Ghodrati, P. & Rashidi, M.M. & Kang, Y.T., 2024. "Structural analysis and optimization of flattened tube gas cooler for transcritical CO2 heat pump systems," Energy, Elsevier, vol. 307(C).
    4. Liu, Guangxu & Huang, Yanping & Wang, Junfeng & Liu, Ruilong, 2020. "A review on the thermal-hydraulic performance and optimization of printed circuit heat exchangers for supercritical CO2 in advanced nuclear power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    5. Fu, Qianmei & Ding, Jing & Lao, Jiewei & Wang, Weilong & Lu, Jianfeng, 2019. "Thermal-hydraulic performance of printed circuit heat exchanger with supercritical carbon dioxide airfoil fin passage and molten salt straight passage," Applied Energy, Elsevier, vol. 247(C), pages 594-604.
    6. Peiyue Li & Wen Fu & Kaidi Zhang & Qiulong Li & Yi Zhang & Yanmo Li & Zhihua Wang & Xiuhua Hou & Yuwei Sun & Wei Wei, 2024. "Effect of Channel Shape on Heat Transfer and Mechanical Properties of Supercritical CO 2 Microchannel Heat Exchanger," Energies, MDPI, vol. 17(15), pages 1-17, July.
    7. Roldán, M.I. & Fernández-Reche, J. & Ballestrín, J., 2016. "Computational fluid dynamics evaluation of the operating conditions for a volumetric receiver installed in a solar tower," Energy, Elsevier, vol. 94(C), pages 844-856.
    8. Jafari, Davoud & Wits, Wessel W., 2018. "The utilization of selective laser melting technology on heat transfer devices for thermal energy conversion applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 420-442.
    9. Yuhui Xiao & Yuan Zhou & Yuan Yuan & Yanping Huang & Gengyuan Tian, 2023. "Research Advances in the Application of the Supercritical CO 2 Brayton Cycle to Reactor Systems: A Review," Energies, MDPI, vol. 16(21), pages 1-23, October.
    10. Li, Qiyuan & Shirazi, Ali & Zheng, Cheng & Rosengarten, Gary & Scott, Jason A. & Taylor, Robert A., 2016. "Energy concentration limits in solar thermal heating applications," Energy, Elsevier, vol. 96(C), pages 253-267.
    11. Cui, Yunfei & Geng, Zhiqiang & Zhu, Qunxiong & Han, Yongming, 2017. "Review: Multi-objective optimization methods and application in energy saving," Energy, Elsevier, vol. 125(C), pages 681-704.
    12. Koide, Hiroaki & Kurniawan, Ade & Takahashi, Tatsuya & Kawaguchi, Takahiro & Sakai, Hiroki & Sato, Yusuke & Chiu, Justin NW. & Nomura, Takahiro, 2022. "Performance analysis of packed bed latent heat storage system for high-temperature thermal energy storage using pellets composed of micro-encapsulated phase change material," Energy, Elsevier, vol. 238(PC).
    13. Ouyang, Tiancheng & Pan, Mingming & Tan, Xianlin & Huang, Youbin & Mo, Chunlan & Wang, Zhiping, 2023. "Advanced power-refrigeration-cycle integrated WHR system for marine natural gas engine base on multi-objective optimization," Energy, Elsevier, vol. 283(C).
    14. Muñoz, Marta & Rovira, Antonio & Sánchez, Consuelo & Montes, María José, 2017. "Off-design analysis of a Hybrid Rankine-Brayton cycle used as the power block of a solar thermal power plant," Energy, Elsevier, vol. 134(C), pages 369-381.
    15. Singh, Sanjay Kumar & Mishra, Manish & Jha, P.K., 2014. "Nonuniformities in compact heat exchangers—scope for better energy utilization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 583-596.
    16. Moudakkar, Touria & El Hallaoui, Z. & Vaudreuil, S. & Bounahmidi, T., 2019. "Modeling and performance analysis of a PTC for industrial phosphate flash drying," Energy, Elsevier, vol. 166(C), pages 1134-1148.
    17. Wei, Min & Fan, Yilin & Luo, Lingai & Flamant, Gilles, 2015. "Fluid flow distribution optimization for minimizing the peak temperature of a tubular solar receiver," Energy, Elsevier, vol. 91(C), pages 663-677.
    18. Khoshvaght-Aliabadi, Morteza & Ghodrati, Parvaneh & Kang, Yong Tae, 2023. "Optimal combination of converging and diverging minichannels in PCHE as precooler under diverse operating conditions of supercritical CO2," Energy, Elsevier, vol. 272(C).
    19. Pandey, V. & Kumar, P. & Dutta, P., 2020. "Thermo-hydraulic analysis of compact heat exchanger for a simple recuperated sCO2 Brayton cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    20. Cheng, Yang & Li, Yingxiao & Wang, Jinghan & Tam, Lapmou & Chen, Yitung & Wang, Qiuwang & Ma, Ting, 2023. "Multi-objective optimization of printed circuit heat exchanger used for hydrogen cooler by exergoeconomic method," Energy, Elsevier, vol. 262(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224001890. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.