IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v232y2021ics0360544221012603.html
   My bibliography  Save this article

Evaluating carbon capturing strategies for emissions reduction in community energy systems: A life cycle thinking approach

Author

Listed:
  • Kotagodahetti, Ravihari
  • Hewage, Kasun
  • Karunathilake, Hirushie
  • Sadiq, Rehan

Abstract

On-site carbon capturing, storage, and utilization (CCSU) has proven its’ potential to reduce CO2 emissions from large-scale fossil fuel combustion systems. However, the integration of CCSU in community-scale on-site energy generation applications such as district energy systems has not been comprehensively explored in literature. This study aims to propose a life cycle thinking-based framework to compare and prioritize emission reduction strategies that include CCSU and renewable energy technologies to develop zero-emission community energy systems. The framework incorporates multi-criteria decision-making approaches to rank and prioritize community energy emission mitigation strategies. A scenario-based method was employed in assessing the performance of CCSU technologies along with other compatible alternative energy choices. The framework was demonstrated for all the provinces in Canada. Results show that CCSU is more favorable for regions with high dependence on fossil fuel-based energy sources. CCSU could reach the commercial scale if the cost of emission avoided drops below the cost of CO2 emissions. . The findings of this study are geared towards providing practical decision-support tools for stakeholders who hold responsible for policy and investment decisions in community energy. The developed framework is a generalized technique that provides the flexibility to be employed in any location across the globe.

Suggested Citation

  • Kotagodahetti, Ravihari & Hewage, Kasun & Karunathilake, Hirushie & Sadiq, Rehan, 2021. "Evaluating carbon capturing strategies for emissions reduction in community energy systems: A life cycle thinking approach," Energy, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:energy:v:232:y:2021:i:c:s0360544221012603
    DOI: 10.1016/j.energy.2021.121012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221012603
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Streimikiene, Dalia & Balezentis, Tomas & Krisciukaitienė, Irena & Balezentis, Alvydas, 2012. "Prioritizing sustainable electricity production technologies: MCDM approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3302-3311.
    2. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    3. Karunathilake, Hirushie & Hewage, Kasun & Mérida, Walter & Sadiq, Rehan, 2019. "Renewable energy selection for net-zero energy communities: Life cycle based decision making under uncertainty," Renewable Energy, Elsevier, vol. 130(C), pages 558-573.
    4. Panchsheela Nogia & Gurpreet Kaur Sidhu & Rajesh Mehrotra & Sandhya Mehrotra, 2016. "Capturing atmospheric carbon: biological and nonbiological methods," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 11(2), pages 266-274.
    5. Hetti, Ravihari Kotagoda & Karunathilake, Hirushie & Chhipi-Shrestha, Gyan & Sadiq, Rehan & Hewage, Kasun, 2020. "Prospects of integrating carbon capturing into community scale energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    6. Abdilahi, Abdirahman M. & Mustafa, Mohd Wazir & Abujarad, Saleh Y. & Mustapha, Mamunu, 2018. "Harnessing flexibility potential of flexible carbon capture power plants for future low carbon power systems: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3101-3110.
    7. Schakel, Wouter & Meerman, Hans & Talaei, Alireza & Ramírez, Andrea & Faaij, André, 2014. "Comparative life cycle assessment of biomass co-firing plants with carbon capture and storage," Applied Energy, Elsevier, vol. 131(C), pages 441-467.
    8. Varun & Bhat, I.K. & Prakash, Ravi, 2009. "LCA of renewable energy for electricity generation systems--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1067-1073, June.
    9. Navid Hossaini & Bahareh Reza & Sharmin Akhtar & Rehan Sadiq & Kasun Hewage, 2015. "AHP based life cycle sustainability assessment (LCSA) framework: a case study of six storey wood frame and concrete frame buildings in Vancouver," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 58(7), pages 1217-1241, July.
    10. Leung, Dennis Y.C. & Caramanna, Giorgio & Maroto-Valer, M. Mercedes, 2014. "An overview of current status of carbon dioxide capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 426-443.
    11. al Irsyad, Muhammad Indra & Halog, Anthony & Nepal, Rabindra, 2019. "Renewable energy projections for climate change mitigation: An analysis of uncertainty and errors," Renewable Energy, Elsevier, vol. 130(C), pages 536-546.
    12. Campos-Guzmán, Verónica & García-Cáscales, M. Socorro & Espinosa, Nieves & Urbina, Antonio, 2019. "Life Cycle Analysis with Multi-Criteria Decision Making: A review of approaches for the sustainability evaluation of renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 343-366.
    13. Stein, Eric W., 2013. "A comprehensive multi-criteria model to rank electric energy production technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 640-654.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Murat Danisman & Erkut Akkartal, 2023. "Defining a New Business Model for Sustainable Biomass Production from Forestry Residues in T rkiye by Using TRIZ," International Journal of Energy Economics and Policy, Econjournals, vol. 13(3), pages 243-253, May.
    2. Volpato, Gabriele & Carraro, Gianluca & Cont, Marco & Danieli, Piero & Rech, Sergio & Lazzaretto, Andrea, 2022. "General guidelines for the optimal economic aggregation of prosumers in energy communities," Energy, Elsevier, vol. 258(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karunathilake, Hirushie & Hewage, Kasun & Mérida, Walter & Sadiq, Rehan, 2019. "Renewable energy selection for net-zero energy communities: Life cycle based decision making under uncertainty," Renewable Energy, Elsevier, vol. 130(C), pages 558-573.
    2. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.
    3. Don Rukmal Liyanage & Kasun Hewage & Hirushie Karunathilake & Gyan Chhipi-Shrestha & Rehan Sadiq, 2021. "Carbon Capture Systems for Building-Level Heating Systems—A Socio-Economic and Environmental Evaluation," Sustainability, MDPI, vol. 13(19), pages 1-30, September.
    4. Ishizaka, Alessio & Siraj, Sajid & Nemery, Philippe, 2016. "Which energy mix for the UK (United Kingdom)? An evolutive descriptive mapping with the integrated GAIA (graphical analysis for interactive aid)–AHP (analytic hierarchy process) visualization tool," Energy, Elsevier, vol. 95(C), pages 602-611.
    5. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    6. Treyer, Karin & Bauer, Christian & Simons, Andrew, 2014. "Human health impacts in the life cycle of future European electricity generation," Energy Policy, Elsevier, vol. 74(S1), pages 31-44.
    7. Milad Kolagar & Seyed Mohammad Hassan Hosseini & Ramin Felegari & Parviz Fattahi, 2020. "Policy-making for renewable energy sources in search of sustainable development: a hybrid DEA-FBWM approach," Environment Systems and Decisions, Springer, vol. 40(4), pages 485-509, December.
    8. José Carlos Romero & Pedro Linares, 2021. "Multiple Criteria Decision-Making as an Operational Conceptualization of Energy Sustainability," Sustainability, MDPI, vol. 13(21), pages 1-14, October.
    9. Dyckhoff, Harald & Souren, Rainer, 2022. "Integrating multiple criteria decision analysis and production theory for performance evaluation: Framework and review," European Journal of Operational Research, Elsevier, vol. 297(3), pages 795-816.
    10. Ali Mostafaeipour & Seyyed Jalaladdin Hosseini Dehshiri & Seyyed Shahabaddin Hosseini Dehshiri & Mehdi Jahangiri & Kuaanan Techato, 2020. "A Thorough Analysis of Potential Geothermal Project Locations in Afghanistan," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    11. Karunathilake, Hirushie & Hewage, Kasun & Prabatha, Tharindu & Ruparathna, Rajeev & Sadiq, Rehan, 2020. "Project deployment strategies for community renewable energy: A dynamic multi-period planning approach," Renewable Energy, Elsevier, vol. 152(C), pages 237-258.
    12. Saraswat, S.K. & Digalwar, Abhijeet K., 2021. "Empirical investigation and validation of sustainability indicators for the assessment of energy sources in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    13. Rivero-Iglesias, Jose M. & Puente, Javier & Fernandez, Isabel & León, Omar, 2023. "Integrated model for the assessment of power generation alternatives through analytic hierarchy process and a fuzzy inference system. Case study of Spain," Renewable Energy, Elsevier, vol. 211(C), pages 563-581.
    14. Barros, C.P. & Wanke, Peter & Dumbo, Silvestre & Manso, Jose Pires, 2017. "Efficiency in angolan hydro-electric power station: A two-stage virtual frontier dynamic DEA and simplex regression approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 588-596.
    15. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Khalifah, Zainab & Zakuan, Norhayati & Jusoh, Ahmad & Nor, Khalil Md & Khoshnoudi, Masoumeh, 2017. "A review of multi-criteria decision-making applications to solve energy management problems: Two decades from 1995 to 2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 216-256.
    16. Saraswat, S.K. & Digalwar, Abhijeet K., 2021. "Evaluation of energy alternatives for sustainable development of energy sector in India: An integrated Shannon’s entropy fuzzy multi-criteria decision approach," Renewable Energy, Elsevier, vol. 171(C), pages 58-74.
    17. Colla, Martin & Ioannou, Anastasia & Falcone, Gioia, 2020. "Critical review of competitiveness indicators for energy projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    18. Indre Siksnelyte & Edmundas Kazimieras Zavadskas & Dalia Streimikiene & Deepak Sharma, 2018. "An Overview of Multi-Criteria Decision-Making Methods in Dealing with Sustainable Energy Development Issues," Energies, MDPI, vol. 11(10), pages 1-21, October.
    19. Jamal, Taskin & Urmee, Tania & Shafiullah, G.M., 2020. "Planning of off-grid power supply systems in remote areas using multi-criteria decision analysis," Energy, Elsevier, vol. 201(C).
    20. Yilan, Gülşah & Kadirgan, M.A. Neşet & Çiftçioğlu, Gökçen A., 2020. "Analysis of electricity generation options for sustainable energy decision making: The case of Turkey," Renewable Energy, Elsevier, vol. 146(C), pages 519-529.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:232:y:2021:i:c:s0360544221012603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.