Author
Listed:
- Taejoon Kim
(Department of Statistics and Biostatistics, California State University East Bay, Hayward, CA 94542, USA)
- Haiyan Wang
(Department of Statistics, Kansas State University, Manhattan, KS 66506, USA)
Abstract
In this article, we present a model for analyzing the co-occurrence count data derived from practical fields such as user–item or item–item data from online shopping platforms and co-occurring word–word pairs in sequences of texts. Such data contain important information for developing recommender systems or studying the relevance of items or words from non-numerical sources. Different from traditional regression models, there are no observations for covariates. Additionally, the co-occurrence matrix is typically of such high dimension that it does not fit into a computer’s memory for modeling. We extract numerical data by defining windows of co-occurrence using weighted counts on the continuous scale. Positive probability mass is allowed for zero observations. We present the Shared Parameter Alternating Tweedie (SA-Tweedie) model and an algorithm to estimate the parameters. We introduce a learning rate adjustment used along with the Fisher scoring method in the inner loop to help the algorithm stay on track with optimizing direction. Gradient descent with the Adam update was also considered as an alternative method for the estimation. Simulation studies showed that our algorithm with Fisher scoring and learning rate adjustment outperforms the other two methods. We applied SA-Tweedie to English-language Wikipedia dump data to obtain dense vector representations for WordPiece tokens. The vector representation embeddings were then used in an application of the Named Entity Recognition (NER) task. The SA-Tweedie embeddings significantly outperform GloVe, random, and BERT embeddings in the NER task. A notable strength of the SA-Tweedie embedding is that the number of parameters and training cost for SA-Tweedie are only a tiny fraction of those for BERT.
Suggested Citation
Taejoon Kim & Haiyan Wang, 2025.
"Global Dense Vector Representations for Words or Items Using Shared Parameter Alternating Tweedie Model,"
Mathematics, MDPI, vol. 13(4), pages 1-40, February.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:4:p:612-:d:1590544
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:4:p:612-:d:1590544. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.