IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v512y2018icp57-67.html
   My bibliography  Save this article

Impulse Weibull distribution for daily precipitation and climate change in China during 1961–2011

Author

Listed:
  • Zhan, Choujun
  • Cao, Weiwen
  • Fan, Junyu
  • Tse, C.K.

Abstract

Based on a newly developed dataset containing daily precipitation in China at 0.5°intervals of longitude and latitude over the period 1961 to 2011, we find that statistical patterns of the daily surface precipitation data from the 3825 measurement sites can be described by a new Impulse Weibull (IWBL) probability distribution. By applying appropriate parameter identification techniques, we estimate all the parameters of the IWBL distribution for each site. We also examine the trends in annual and daily precipitation over the period 1961 to 2011. Results show that the probability of rainy days has decreased over time for over 90% the surface area of China, and that the extreme precipitation and annual precipitation have decreased for most of the area in China.

Suggested Citation

  • Zhan, Choujun & Cao, Weiwen & Fan, Junyu & Tse, C.K., 2018. "Impulse Weibull distribution for daily precipitation and climate change in China during 1961–2011," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 57-67.
  • Handle: RePEc:eee:phsmap:v:512:y:2018:i:c:p:57-67
    DOI: 10.1016/j.physa.2018.07.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118308975
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.07.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lun, Isaac Y.F & Lam, Joseph C, 2000. "A study of Weibull parameters using long-term wind observations," Renewable Energy, Elsevier, vol. 20(2), pages 145-153.
    2. Manfred Mudelsee & Michael Börngen & Gerd Tetzlaff & Uwe Grünewald, 2003. "No upward trends in the occurrence of extreme floods in central Europe," Nature, Nature, vol. 425(6954), pages 166-169, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Islam, M.R. & Saidur, R. & Rahim, N.A., 2011. "Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function," Energy, Elsevier, vol. 36(2), pages 985-992.
    2. Farihan Mohamad & Jiashen Teh & Ching-Ming Lai & Liang-Rui Chen, 2018. "Development of Energy Storage Systems for Power Network Reliability: A Review," Energies, MDPI, vol. 11(9), pages 1-19, August.
    3. Morales, J.M. & Mínguez, R. & Conejo, A.J., 2010. "A methodology to generate statistically dependent wind speed scenarios," Applied Energy, Elsevier, vol. 87(3), pages 843-855, March.
    4. Dongbum Kang & Kyungnam Ko & Jongchul Huh, 2018. "Comparative Study of Different Methods for Estimating Weibull Parameters: A Case Study on Jeju Island, South Korea," Energies, MDPI, vol. 11(2), pages 1-19, February.
    5. El Alimi, Souheil & Maatallah, Taher & Dahmouni, Anouar Wajdi & Ben Nasrallah, Sassi, 2012. "Modeling and investigation of the wind resource in the gulf of Tunis, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5466-5478.
    6. Santos, E.C.O. & Guedes, E.F. & Zebende, G.F. & da Silva Filho, A.M., 2022. "Autocorrelation of wind speed: A sliding window approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    7. Shu, Z.R. & Li, Q.S. & Chan, P.W., 2015. "Investigation of offshore wind energy potential in Hong Kong based on Weibull distribution function," Applied Energy, Elsevier, vol. 156(C), pages 362-373.
    8. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    9. Macleod, Alasdair, 2008. "Using the microclimate to optimise renewable energy installations," Renewable Energy, Elsevier, vol. 33(8), pages 1804-1813.
    10. Olatayo, Kunle Ibukun & Wichers, J. Harry & Stoker, Piet W., 2018. "Energy and economic performance of small wind energy systems under different climatic conditions of South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 376-392.
    11. Murthy, K.S.R. & Rahi, O.P., 2017. "A comprehensive review of wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1320-1342.
    12. Emilio Gómez-Lázaro & María C. Bueso & Mathieu Kessler & Sergio Martín-Martínez & Jie Zhang & Bri-Mathias Hodge & Angel Molina-García, 2016. "Probability Density Function Characterization for Aggregated Large-Scale Wind Power Based on Weibull Mixtures," Energies, MDPI, vol. 9(2), pages 1-15, February.
    13. He, J.Y. & Li, Q.S. & Chan, P.W. & Zhao, X.D., 2023. "Assessment of future wind resources under climate change using a multi-model and multi-method ensemble approach," Applied Energy, Elsevier, vol. 329(C).
    14. Abul Kalam Azad & Mohammad Golam Rasul & Talal Yusaf, 2014. "Statistical Diagnosis of the Best Weibull Methods for Wind Power Assessment for Agricultural Applications," Energies, MDPI, vol. 7(5), pages 1-30, May.
    15. Luc Feyen & Rutger Dankers & Katalin Bódis & Peter Salamon & José Barredo, 2012. "Fluvial flood risk in Europe in present and future climates," Climatic Change, Springer, vol. 112(1), pages 47-62, May.
    16. Juan, Y.-H. & Wen, C.-Y. & Chen, W.-Y. & Yang, A.-S., 2021. "Numerical assessments of wind power potential and installation arrangements in realistic highly urbanized areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    17. Sant’Anna de Sousa Gomes, Mateus & Faulstich de Paiva, Jane Maria & Aparecida da Silva Moris, Virgínia & Nunes, Andréa Oliveira, 2019. "Proposal of a methodology to use offshore wind energy on the southeast coast of Brazil," Energy, Elsevier, vol. 185(C), pages 327-336.
    18. Peillón, Manuel & Sánchez, Raúl & Tarquis, Ana M. & García-Fernández, José L., 2013. "The use of wind pumps for greenhouse microirrigation: A case study for tomato in Cuba," Agricultural Water Management, Elsevier, vol. 120(C), pages 107-114.
    19. Chao Long & Mohamed Emad A. Farrag & Donald M. Hepburn & Chengke Zhou, 2014. "Point Estimate Method for Voltage Unbalance Evaluation in Residential Distribution Networks with High Penetration of Small Wind Turbines," Energies, MDPI, vol. 7(11), pages 1-15, November.
    20. Estefania Artigao & Antonio Vigueras-Rodríguez & Andrés Honrubia-Escribano & Sergio Martín-Martínez & Emilio Gómez-Lázaro, 2021. "Wind Resource and Wind Power Generation Assessment for Education in Engineering," Sustainability, MDPI, vol. 13(5), pages 1-27, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:512:y:2018:i:c:p:57-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.