IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p1130-d502917.html
   My bibliography  Save this article

Numerical Investigation of the Combined Influence of Three-Plug Arrangement and Slot Positioning on Wankel Engine Performance

Author

Listed:
  • Shimon Pisnoy

    (Faculty of Mechanical Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel)

  • Leonid Tartakovsky

    (Faculty of Mechanical Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel)

Abstract

A numerical methodology for three-dimensional fluid dynamics and chemical kinetics simulation of the combustion and gas-exchange processes in the Wankel engine was developed and validated. Two approaches of performance enhancement were studied—the addition of a slot in the rear side of the rotor recess, and installation of a third plug in the trailing side of the working chamber, in addition to the two available plugs mounted in the leading side of the baseline engine. The obtained results showed that the suggested three-plug arrangement significantly improves the engine performance. Furthermore, positioning the trailing plug further from the passage between the trailing and leading sides is of preference for higher mean in-chamber pressures. Nevertheless, for maximum performance, the distance should be brought to an optimum as during the intake stroke there is a loss of inducted charge due to backflow from the trailing plug hole. For the three-plug arrangement the presence of a slot is necessary for the prevention of early flame quenching in the trailing side, while keeping the added volume to a minimum. Moreover, positioning the slot and the trailing plug off-center, results in higher flow intensity towards the leading plugs, and accordingly, to a higher combustion efficiency. For dual-plug ignition system (two plugs in the leading side) it is preferable to maintain minimum clearance in the trailing side.

Suggested Citation

  • Shimon Pisnoy & Leonid Tartakovsky, 2021. "Numerical Investigation of the Combined Influence of Three-Plug Arrangement and Slot Positioning on Wankel Engine Performance," Energies, MDPI, vol. 14(4), pages 1-18, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1130-:d:502917
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/1130/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/1130/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Osman Akin Kutlar & Fatih Malkaz, 2019. "Two-Stroke Wankel Type Rotary Engine: A New Approach for Higher Power Density," Energies, MDPI, vol. 12(21), pages 1-22, October.
    2. Yang, Jinxin & Ji, Changwei & Wang, Shuofeng & Wang, Du & Ma, Zedong & Zhang, Boya, 2018. "Numerical investigation on the mixture formation and combustion processes of a gasoline rotary engine with direct injected hydrogen enrichment," Applied Energy, Elsevier, vol. 224(C), pages 34-41.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Merve Kucuk & Ali Surmen & Ramazan Sener, 2022. "Influence of Hydrogen Enrichment Strategy on Performance Characteristics, Combustion and Emissions of a Rotary Engine for Unmanned Aerial Vehicles (UAVs)," Energies, MDPI, vol. 15(24), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Joonsuk & Chun, Kwang Min & Song, Soonho & Baek, Hong-Kil & Lee, Seung Woo, 2018. "Hydrogen effects on the combustion stability, performance and emissions of a turbo gasoline direct injection engine in various air/fuel ratios," Applied Energy, Elsevier, vol. 228(C), pages 1353-1361.
    2. Chen, Wei & Pan, Jianfeng & Liu, Yangxian & Fan, Baowei & Liu, Hongjun & Otchere, Peter, 2019. "Numerical investigation of direct injection stratified charge combustion in a natural gas-diesel rotary engine," Applied Energy, Elsevier, vol. 233, pages 453-467.
    3. Jiao, Huichao & Ye, Xianlei & Zou, Run & Wang, Nana & Liu, Jinxiang, 2022. "Comparative study on ignition and combustion between conventional spark-ignition method and near-wall surface ignition method for small-scale Wankel rotary engine," Energy, Elsevier, vol. 255(C).
    4. Fengshuo He & Xiumin Yu & Yaodong Du & Zhen Shang & Zezhou Guo & Guanting Li & Decheng Li, 2019. "Inner Selective Non-Catalytic Reduction Strategy for Nitrogen Oxides Abatement: Investigation of Ammonia Aqueous Solution Direct Injection with an SI Engine Model," Energies, MDPI, vol. 12(14), pages 1-18, July.
    5. Savvas Savvakis & Dimitrios Mertzis & Elias Nassiopoulos & Zissis Samaras, 2020. "A Design of the Compression Chamber and Optimization of the Sealing of a Novel Rotary Internal Combustion Engine Using CFD," Energies, MDPI, vol. 13(9), pages 1-21, May.
    6. Yang, Jinxin & Wang, Huaiyu & Ji, Changwei & Chang, Ke & Wang, Shuofeng, 2023. "Investigation of intake closing timing on the flow field and combustion process in a small-scaled Wankel rotary engine under various engine speeds designed for the UAV application," Energy, Elsevier, vol. 273(C).
    7. Wang, Huaiyu & Ji, Changwei & Shi, Cheng & Yang, Jinxin & Wang, Shuofeng & Ge, Yunshan & Chang, Ke & Meng, Hao & Wang, Xin, 2023. "Multi-objective optimization of a hydrogen-fueled Wankel rotary engine based on machine learning and genetic algorithm," Energy, Elsevier, vol. 263(PD).
    8. Merve Kucuk & Ali Surmen & Ramazan Sener, 2022. "Influence of Hydrogen Enrichment Strategy on Performance Characteristics, Combustion and Emissions of a Rotary Engine for Unmanned Aerial Vehicles (UAVs)," Energies, MDPI, vol. 15(24), pages 1-22, December.
    9. Wang, Huaiyu & Ji, Changwei & Wang, Du & Wang, Zhe & Yang, Jinxin & Meng, Hao & Shi, Cheng & Wang, Shuofeng & Wang, Xin & Ge, Yunshan & Yang, Wenming, 2023. "Investigation on the potential of using carbon-free ammonia and hydrogen in small-scaled Wankel rotary engines," Energy, Elsevier, vol. 283(C).
    10. Qi Geng & Xuede Wang & Yang Du & Zhenghao Yang & Rui Wang & Guangyu He, 2022. "Effect of the Hydrogen Injection Position on the Combustion Process of a Direct Injection X-Type Rotary Engine with a Hydrogen Blend," Energies, MDPI, vol. 15(19), pages 1-19, October.
    11. Chang, Ke & Ji, Changwei & Wang, Shuofeng & Yang, Jinxin & Wang, Huaiyu & Xin, Gu & Meng, Hao, 2022. "Numerical investigation of the combined effect of injection angle and injection pressure in a gasoline direct injection rotary engine," Energy, Elsevier, vol. 254(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1130-:d:502917. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.