IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v307y2024ics0360544224024605.html
   My bibliography  Save this article

Effects of diesel injector nozzle angle and split diesel injection strategy on combustion and emission characteristics of an ammonia/diesel dual-fuel engine

Author

Listed:
  • Wang, Zhongxuan
  • Yang, Can
  • Zhang, Fan
  • Cheng, Xiaobei

Abstract

Pre-injection can effectively improve combustion and thermal efficiency while reducing unburned ammonia (uNH3) and N2O emissions in ammonia/diesel dual-fuel engines. Nevertheless, the pre-injected diesel often impacts the cylinder liner or piston pinch area, adversely affecting combustion and emissions. In this study, various narrow injector nozzle angles (90°/60°) of diesel fuel are applied on investigating engine performance and emissions. Experiments are conducted at 1200 r/min, IMEP 1.2 MPa, and AEF (ammonia energy fraction) 50 %, consisting of varying INA (injector nozzle angle) of 145°/90°/60°, PIR (pre-injection ratio) from 20 %–80 %, PIT (pre-injection timing) from −70 °CA ATDC to −30 °CA ATDC, and sweeping MIT (main injection timing). Results show that larger INA prefer a lower PIR and delayed PIT to reduce the pre-injected fuel hitting the liner, and smaller INA prefer a higher PIR to reduce the main-injected fuel hitting the piston wall. ITE of INA145° peaks at a moderate PIR and delayed PIT while ITE of INA90° and INA60° peaks at a high PIR and early PIT. Decreasing INA combined with high PIR and early PIT helps to reduce uNH3, N2O, and GHG emissions, at the cost of a slight decrease in ITE.

Suggested Citation

  • Wang, Zhongxuan & Yang, Can & Zhang, Fan & Cheng, Xiaobei, 2024. "Effects of diesel injector nozzle angle and split diesel injection strategy on combustion and emission characteristics of an ammonia/diesel dual-fuel engine," Energy, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224024605
    DOI: 10.1016/j.energy.2024.132686
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224024605
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132686?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Liu, Junheng & Liu, Yuan & Ji, Qian & Sun, Ping & Zhang, Xuchao & Wang, Xidong & Ma, Hongjie, 2023. "Effects of split injection strategy on combustion stability and GHG emissions characteristics of natural gas/diesel RCCI engine under high load," Energy, Elsevier, vol. 266(C).
    3. Yapicioglu, Arda & Dincer, Ibrahim, 2019. "A review on clean ammonia as a potential fuel for power generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 96-108.
    4. Park, Su Han & Yoon, Seung Hyun & Lee, Chang Sik, 2013. "HC and CO emissions reduction by early injection strategy in a bioethanol blended diesel-fueled engine with a narrow angle injection system," Applied Energy, Elsevier, vol. 107(C), pages 81-88.
    5. Liu, Shang & Lin, Zhelong & Zhang, Hao & Lei, Nuo & Qi, Yunliang & Wang, Zhi, 2023. "Impact of ammonia addition on knock resistance and combustion performance in a gasoline engine with high compression ratio," Energy, Elsevier, vol. 262(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elbanna, Ahmed Mohammed & Cheng, Xiaobei, 2024. "The role of charge reactivity in ammonia/diesel dual fuel combustion in compression ignition engine," Energy, Elsevier, vol. 306(C).
    2. Lee, Boreum & Park, Junhyung & Lee, Hyunjun & Byun, Manhee & Yoon, Chang Won & Lim, Hankwon, 2019. "Assessment of the economic potential: COx-free hydrogen production from renewables via ammonia decomposition for small-sized H2 refueling stations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Wang, Jianxiao & An, Qi & Zhao, Yue & Pan, Guangsheng & Song, Jie & Hu, Qinran & Tan, Chin-Woo, 2023. "Role of electrolytic hydrogen in smart city decarbonization in China," Applied Energy, Elsevier, vol. 336(C).
    4. Wei, Wenwen & Li, Gesheng & Zhang, Zunhua & Long, Yanxiang & Zhang, Hanyuyang & Huang, Yong & Zhou, Mengni & Wei, Yi, 2023. "Effects of ammonia addition on the performance and emissions for a spark-ignition marine natural gas engine," Energy, Elsevier, vol. 272(C).
    5. Lin, Zhelong & Liu, Shang & Qi, Yunliang & Chen, Qingchu & Wang, Zhi, 2024. "Experimental study on the performance of a high compression ratio SI engine using alcohol/ammonia fuel," Energy, Elsevier, vol. 289(C).
    6. Ahmed, Shoaib & Li, Tie & Yi, Ping & Chen, Run, 2023. "Environmental impact assessment of green ammonia-powered very large tanker ship for decarbonized future shipping operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    7. Zhang, Hanfei & Wang, Ligang & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic comparison of green ammonia production processes," Applied Energy, Elsevier, vol. 259(C).
    8. Lv, Chengkun & Huang, Qian & Lan, Zhu & Chang, Juntao & Yu, Daren, 2023. "Parametric optimization and exergy analysis of a high mach number aeroengine with an ammonia mass injection pre-compressor cooling cycle," Energy, Elsevier, vol. 282(C).
    9. Wang, Shuofeng & Sun, Yu & Yang, Jinxin & Wang, Huaiyu, 2024. "Effect of excess air ratio and ignition timing on the combustion and emission characteristics of the ammonia-hydrogen Wankel rotary engine," Energy, Elsevier, vol. 302(C).
    10. Halis, Serdar & Kocakulak, Tolga, 2024. "RSM based optimization of lambda and mixed fuel concentration parameters of an LTC mode engine," Energy, Elsevier, vol. 306(C).
    11. Mohamed Shameer, P. & Ramesh, K. & Sakthivel, R. & Purnachandran, R., 2017. "Effects of fuel injection parameters on emission characteristics of diesel engines operating on various biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1267-1281.
    12. Liu, Shang & Lin, Zhelong & Qi, Yunliang & Wang, Zhi & Yang, Dongsheng & Lu, Guoxiang & Wang, Bo, 2024. "Combustion and emission characteristics of a spark ignition engine fueled with ammonia/gasoline and pure ammonia," Applied Energy, Elsevier, vol. 369(C).
    13. Arnaiz del Pozo, Carlos & Cloete, Schalk & Jiménez Álvaro, Ángel, 2023. "Ammonia from solid fuels: A cost-effective route to energy security with negative CO2 emissions," Energy, Elsevier, vol. 278(PA).
    14. Magdalena Klopott & Marzenna Popek & Ilona Urbanyi-Popiołek, 2023. "Seaports’ Role in Ensuring the Availability of Alternative Marine Fuels—A Multi-Faceted Analysis," Energies, MDPI, vol. 16(7), pages 1-30, March.
    15. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2023. "Advanced strategies to reduce harmful nitrogen-oxide emissions from biodiesel fueled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    16. Zhang, Hao & Lei, Nuo & Wang, Zhi, 2024. "Ammonia-hydrogen propulsion system for carbon-free heavy-duty vehicles," Applied Energy, Elsevier, vol. 369(C).
    17. Zhao, Wenbin & Wu, Haoqing & Mi, Shijie & Zhang, Yaoyuan & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2023. "Experimental investigation of the control strategy of high load extension under iso-butanol/biodiesel dual-fuel intelligent charge compression ignition (ICCI) mode," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    18. Pradelle, Florian & Leal Braga, Sergio & Fonseca de Aguiar Martins, Ana Rosa & Turkovics, Franck & Nohra Chaar Pradelle, Renata, 2019. "Performance and combustion characteristics of a compression ignition engine running on diesel-biodiesel-ethanol (DBE) blends – Potential as diesel fuel substitute on an Euro III engine," Renewable Energy, Elsevier, vol. 136(C), pages 586-598.
    19. Zhang, Hanfei & Desideri, Umberto, 2020. "Techno-economic optimization of power-to-methanol with co-electrolysis of CO2 and H2O in solid-oxide electrolyzers," Energy, Elsevier, vol. 199(C).
    20. Herreros, J.M. & Schroer, K. & Sukjit, E. & Tsolakis, A., 2015. "Extending the environmental benefits of ethanol–diesel blends through DGE incorporation," Applied Energy, Elsevier, vol. 146(C), pages 335-343.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224024605. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.