IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v307y2024ics0360544224023843.html
   My bibliography  Save this article

Automatic response framework for large complex natural gas pipeline operation optimization based on data-mechanism hybrid-driven

Author

Listed:
  • Zhou, Jun
  • Qin, Can
  • Fu, Tiantian
  • Liu, Shitao
  • Liang, Guangchuan
  • Li, Cuicui
  • Hong, Bingyuan

Abstract

In recent years, the scale of gas transmission networks has been continuously expanding, and the operational conditions are becoming increasingly complex. This poses higher requirements for the centralized control of the pipeline network operation. Relying solely on the experience of scheduling personnel may not comprehensively address the operational issues within the network. There is an urgent need for efficient automatic response methods (ARM) to assist in formulating operation schemes and ensuring the safe and stable operation of the pipeline network. Therefore, this paper proposes an automatic response framework of large complex natural gas pipeline operation optimization based on data-mechanism coupling to provide operation schemes that ensure safety, stability, and economic benefits. First, two ARM is proposed, namely the Data-Based ARM using operation scheme database, and the Opti-Model ARM based on optimization modeling. Subsequently, the rapid response features of Data-Based ARM and the optimal response characteristics of Opti-Model ARM are combined to establish the Integrated ARM. Finally, these three ARMs are compared and analyzed through a regional natural gas pipeline network in China. The result indicates that the Data-Based ARM can quickly produce a variety of matched solutions but cannot ensure economic optimality. Response solutions obtained through Opti-Model ARM reduce the compressor energy costs by 4.6–10.8 % compared to on-site operational schemes, but they take longer in response time. In contrast, the economic attributes of solutions derived from the Integrated ARM are on par with Opti-Model ARM, but with a 58.7 % improvement in response speed. The proposed Integrated ARM can swiftly and accurately offer economically viable operation schemes tailored to the varying needs of pipeline operators, which can help to address the energy demand challenges of the future, fostering sustainable development.

Suggested Citation

  • Zhou, Jun & Qin, Can & Fu, Tiantian & Liu, Shitao & Liang, Guangchuan & Li, Cuicui & Hong, Bingyuan, 2024. "Automatic response framework for large complex natural gas pipeline operation optimization based on data-mechanism hybrid-driven," Energy, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224023843
    DOI: 10.1016/j.energy.2024.132610
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224023843
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132610?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Guotao & Liao, Qi & Li, Zhengbing & Zhang, Haoran & Liang, Yongtu & Wei, Xuemei, 2022. "How does soaring natural gas prices impact renewable energy: A case study in China," Energy, Elsevier, vol. 252(C).
    2. Björn Geißler & Antonio Morsi & Lars Schewe & Martin Schmidt, 2018. "Solving Highly Detailed Gas Transport MINLPs: Block Separability and Penalty Alternating Direction Methods," INFORMS Journal on Computing, INFORMS, vol. 30(2), pages 309-323, May.
    3. Li, Fengyun & Li, Xingmei, 2022. "An empirical analysis on regional natural gas market of China from a spatial pattern and social network perspective," Energy, Elsevier, vol. 244(PA).
    4. Hong, Bingyuan & Qiao, Dan & Li, Yichen & Sun, Xiaoqing & Yang, Baolong & Li, Li & Gong, Jing & Wen, Kai, 2023. "Supply-demand balance of natural gas pipeline network integrating hydraulic and thermal characteristics, energy conservation and carbon reduction," Energy, Elsevier, vol. 283(C).
    5. Daniel Rose & Martin Schmidt & Marc C. Steinbach & Bernhard M. Willert, 2016. "Computational optimization of gas compressor stations: MINLP models versus continuous reformulations," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 83(3), pages 409-444, June.
    6. Yu, Weichao & Huang, Weihe & Wen, Yunhao & Li, Yichen & Liu, Hongfei & Wen, Kai & Gong, Jing & Lu, Yanan, 2021. "An integrated gas supply reliability evaluation method of the large-scale and complex natural gas pipeline network based on demand-side analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    7. Pelin Cay & Ali Esmali & Camilo Mancilla & Robert H. Storer & Luis F. Zuluaga, 2018. "Solutions with performance guarantees on tactical decisions for industrial gas network problems," IISE Transactions, Taylor & Francis Journals, vol. 50(8), pages 654-667, August.
    8. Yin, Xiong & Wen, Kai & Huang, Weihe & Luo, Yinwei & Ding, Yi & Gong, Jing & Gao, Jianfeng & Hong, Bingyuan, 2023. "A high-accuracy online transient simulation framework of natural gas pipeline network by integrating physics-based and data-driven methods," Applied Energy, Elsevier, vol. 333(C).
    9. Sam Park, Kyung & Sang Lee, Kyung & Seong Eum, Yun & Park, Kwangtae, 2001. "Extended methods for identifying dominance and potential optimality in multi-criteria analysis with imprecise information," European Journal of Operational Research, Elsevier, vol. 134(3), pages 557-563, November.
    10. Wen, Kai & Qiao, Dan & Nie, Chaofei & Lu, Yangfan & Wen, Feng & Zhang, Jing & Miao, Qing & Gong, Jing & Li, Cuicui & Hong, Bingyuan, 2023. "Multi-period supply and demand balance of large-scale and complex natural gas pipeline network: Economy and environment," Energy, Elsevier, vol. 264(C).
    11. Jingkuan Han & Yingjun Xu & Dingzhi Liu & Yanfang Zhao & Zhongde Zhao & Shuhui Zhou & Tianhu Deng & Mengying Xue & Junchi Ye & Zuo-Jun Max Shen, 2019. "Operations Research Enables Better Planning of Natural Gas Pipelines," Interfaces, INFORMS, vol. 49(1), pages 23-39, January.
    12. Mikolajková, Markéta & Saxén, Henrik & Pettersson, Frank, 2018. "Linearization of an MINLP model and its application to gas distribution optimization," Energy, Elsevier, vol. 146(C), pages 156-168.
    13. Wen, Kai & Jiao, Jianfeng & Zhao, Kang & Yin, Xiong & Liu, Yuan & Gong, Jing & Li, Cuicui & Hong, Bingyuan, 2023. "Rapid transient operation control method of natural gas pipeline networks based on user demand prediction," Energy, Elsevier, vol. 264(C).
    14. Wen, Kai & Lu, Yangfan & Lu, Meitong & Zhang, Wenwei & Zhu, Ming & Qiao, Dan & Meng, Fanpeng & Zhang, Jing & Gong, Jing & Hong, Bingyuan, 2022. "Multi-period optimal infrastructure planning of natural gas pipeline network system integrating flowrate allocation," Energy, Elsevier, vol. 257(C).
    15. Wei, Xintong & Qiu, Rui & Liang, Yongtu & Liao, Qi & Klemeš, Jiří Jaromír & Xue, Jinjun & Zhang, Haoran, 2022. "Roadmap to carbon emissions neutral industrial parks: Energy, economic and environmental analysis," Energy, Elsevier, vol. 238(PA).
    16. Wang, Guotao & Zhao, Wei & Qiu, Rui & Liao, Qi & Lin, Zhenjia & Wang, Chang & Zhang, Haoran, 2023. "Operational optimization of large-scale thermal constrained natural gas pipeline networks: A novel iterative decomposition approach," Energy, Elsevier, vol. 282(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Guotao & Zhao, Wei & Qiu, Rui & Liao, Qi & Lin, Zhenjia & Wang, Chang & Zhang, Haoran, 2023. "Operational optimization of large-scale thermal constrained natural gas pipeline networks: A novel iterative decomposition approach," Energy, Elsevier, vol. 282(C).
    2. Peng, Jinghong & Zhou, Jun & Liang, Guangchuan & Li, Chengyu & Qin, Can, 2024. "Multi-period integrated scheduling optimization of complex natural gas pipeline network system with underground gas storage to ensure economic and environmental benefits," Energy, Elsevier, vol. 302(C).
    3. Koo, Bonchan & Chang, Seungjoon & Kwon, Hweeung, 2023. "Digital twin for natural gas infrastructure operation and management via streaming dynamic mode decomposition with control," Energy, Elsevier, vol. 274(C).
    4. Hong, Bingyuan & Qiao, Dan & Li, Yichen & Sun, Xiaoqing & Yang, Baolong & Li, Li & Gong, Jing & Wen, Kai, 2023. "Supply-demand balance of natural gas pipeline network integrating hydraulic and thermal characteristics, energy conservation and carbon reduction," Energy, Elsevier, vol. 283(C).
    5. Mengying Xue & Tianhu Deng & Zuo‐Jun Max Shen, 2019. "Optimizing natural gas pipeline transmission with nonuniform elevation: A new initialization approach," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 547-564, October.
    6. Wen, Kai & Lu, Yangfan & Lu, Meitong & Zhang, Wenwei & Zhu, Ming & Qiao, Dan & Meng, Fanpeng & Zhang, Jing & Gong, Jing & Hong, Bingyuan, 2022. "Multi-period optimal infrastructure planning of natural gas pipeline network system integrating flowrate allocation," Energy, Elsevier, vol. 257(C).
    7. Zhou, Jun & Zhu, Jiaxing & Liang, Guangchuan & Ma, Junjie & He, Jiayi & Du, Penghua & Ye, Zhanpeng, 2024. "Three-layer and robust planning models to evaluate the strategies of defense layer, attack layer, and operation layer for optimal protection in natural gas pipeline network," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    8. Johannes Thürauf, 2022. "Deciding the feasibility of a booking in the European gas market is coNP-hard," Annals of Operations Research, Springer, vol. 318(1), pages 591-618, November.
    9. Benjamin Hiller & René Saitenmacher & Tom Walther, 2021. "Improved models for operation modes of complex compressor stations," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(2), pages 171-195, October.
    10. Falk M. Hante & Martin Schmidt, 2019. "Complementarity-based nonlinear programming techniques for optimal mixing in gas networks," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 299-323, September.
    11. Lin, Zijie & Xie, Linbo & Zhang, Siyuan, 2024. "A compound framework for short-term gas load forecasting combining time-enhanced perception transformer and two-stage feature extraction," Energy, Elsevier, vol. 298(C).
    12. Yijiang Li & Santanu S. Dey & Nikolaos V. Sahinidis, 2024. "A reformulation-enumeration MINLP algorithm for gas network design," Journal of Global Optimization, Springer, vol. 90(4), pages 931-963, December.
    13. Richard Krug & Günter Leugering & Alexander Martin & Martin Schmidt & Dieter Weninger, 2024. "A Consensus-Based Alternating Direction Method for Mixed-Integer and PDE-Constrained Gas Transport Problems," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 397-416, March.
    14. Lars Schewe & Martin Schmidt & Johannes Thürauf, 2020. "Computing technical capacities in the European entry-exit gas market is NP-hard," Annals of Operations Research, Springer, vol. 295(1), pages 337-362, December.
    15. Liu, Xinglei & Liu, Jun & Ren, Kezheng & Liu, Xiaoming & Liu, Jiacheng, 2022. "An integrated fuzzy multi-energy transaction evaluation approach for energy internet markets considering judgement credibility and variable rough precision," Energy, Elsevier, vol. 261(PB).
    16. Podinovski, Vladislav V., 2013. "Non-dominance and potential optimality for partial preference relations," European Journal of Operational Research, Elsevier, vol. 229(2), pages 482-486.
    17. Zhang, Zhonglian & Yang, Xiaohui & Li, Moxuan & Deng, Fuwei & Xiao, Riying & Mei, Linghao & Hu, Zecheng, 2023. "Optimal configuration of improved dynamic carbon neutral energy systems based on hybrid energy storage and market incentives," Energy, Elsevier, vol. 284(C).
    18. Qiu, Rui & Zhang, Haoran & Wang, Guotao & Liang, Yongtu & Yan, Jinyue, 2023. "Green hydrogen-based energy storage service via power-to-gas technologies integrated with multi-energy microgrid," Applied Energy, Elsevier, vol. 350(C).
    19. Dawei Feng & Wenchao Xu & Xinyu Gao & Yun Yang & Shirui Feng & Xiaohu Yang & Hailong Li, 2023. "Carbon Emission Prediction and the Reduction Pathway in Industrial Parks: A Scenario Analysis Based on the Integration of the LEAP Model with LMDI Decomposition," Energies, MDPI, vol. 16(21), pages 1-15, October.
    20. Yuancheng Lin & Honghua Yang & Linwei Ma & Zheng Li & Weidou Ni, 2021. "Low-Carbon Development for the Iron and Steel Industry in China and the World: Status Quo, Future Vision, and Key Actions," Sustainability, MDPI, vol. 13(22), pages 1-28, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224023843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.