IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v94y2021i2d10.1007_s00186-021-00745-x.html
   My bibliography  Save this article

Improved models for operation modes of complex compressor stations

Author

Listed:
  • Benjamin Hiller

    (Zuse Institute Berlin
    atesio GmbH)

  • René Saitenmacher

    (Zuse Institute Berlin
    Technische Universitát Berlin)

  • Tom Walther

    (Zuse Institute Berlin
    Gnosis Ltd)

Abstract

We study combinatorial structures in large-scale mixed-integer (nonlinear) programming problems arising in gas network optimization. We propose a preprocessing strategy exploiting the observation that a large part of the combinatorial complexity arises in certain subnetworks. Our approach analyzes these subnetworks and the combinatorial structure of the flows within these subnetworks in order to provide alternative models with a stronger combinatorial structure that can be exploited by off-the-shelve solvers. In particular, we consider the modeling of operation modes for complex compressor stations (i.e., ones with several in- or outlets) in gas networks. We propose a refined model that allows to precompute tighter bounds for each operation mode and a number of model variants based on the refined model exploiting these tighter bounds. We provide a procedure to obtain the refined model from the input data for the original model. This procedure is based on a nontrivial reduction of the graph representing the gas flow through the compressor station in an operation mode. We evaluate our model variants on reference benchmark data, showing that they reduce the average running time between 10% for easy instances and 46% for hard instances. Moreover, for three of four considered networks, the average number of search tree nodes is at least halved, showing the effectivity of our model variants to guide the solver’s search.

Suggested Citation

  • Benjamin Hiller & René Saitenmacher & Tom Walther, 2021. "Improved models for operation modes of complex compressor stations," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(2), pages 171-195, October.
  • Handle: RePEc:spr:mathme:v:94:y:2021:i:2:d:10.1007_s00186-021-00745-x
    DOI: 10.1007/s00186-021-00745-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-021-00745-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-021-00745-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diethard Klatte & Hans-Jakob Lüthi & Karl Schmedders (ed.), 2012. "Operations Research Proceedings 2011," Operations Research Proceedings, Springer, edition 127, number 978-3-642-29210-1, March.
    2. Björn Geißler & Antonio Morsi & Lars Schewe & Martin Schmidt, 2018. "Solving Highly Detailed Gas Transport MINLPs: Block Separability and Penalty Alternating Direction Methods," INFORMS Journal on Computing, INFORMS, vol. 30(2), pages 309-323, May.
    3. Daniel Wolf & Bouchra Bakhouya, 2012. "Optimal dimensioning of pipe networks: the new situation when the distribution and the transportation functions are disconnected," Operations Research Proceedings, in: Diethard Klatte & Hans-Jakob Lüthi & Karl Schmedders (ed.), Operations Research Proceedings 2011, edition 127, pages 369-374, Springer.
    4. Daniel Rose & Martin Schmidt & Marc C. Steinbach & Bernhard M. Willert, 2016. "Computational optimization of gas compressor stations: MINLP models versus continuous reformulations," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 83(3), pages 409-444, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengying Xue & Tianhu Deng & Zuo‐Jun Max Shen, 2019. "Optimizing natural gas pipeline transmission with nonuniform elevation: A new initialization approach," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 547-564, October.
    2. Johannes Thürauf, 2022. "Deciding the feasibility of a booking in the European gas market is coNP-hard," Annals of Operations Research, Springer, vol. 318(1), pages 591-618, November.
    3. Falk M. Hante & Martin Schmidt, 2019. "Complementarity-based nonlinear programming techniques for optimal mixing in gas networks," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 299-323, September.
    4. Mikolajková, Markéta & Haikarainen, Carl & Saxén, Henrik & Pettersson, Frank, 2017. "Optimization of a natural gas distribution network with potential future extensions," Energy, Elsevier, vol. 125(C), pages 848-859.
    5. Yijiang Li & Santanu S. Dey & Nikolaos V. Sahinidis, 2024. "A reformulation-enumeration MINLP algorithm for gas network design," Journal of Global Optimization, Springer, vol. 90(4), pages 931-963, December.
    6. Richard Krug & Günter Leugering & Alexander Martin & Martin Schmidt & Dieter Weninger, 2024. "A Consensus-Based Alternating Direction Method for Mixed-Integer and PDE-Constrained Gas Transport Problems," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 397-416, March.
    7. Zhou, Jun & Qin, Can & Fu, Tiantian & Liu, Shitao & Liang, Guangchuan & Li, Cuicui & Hong, Bingyuan, 2024. "Automatic response framework for large complex natural gas pipeline operation optimization based on data-mechanism hybrid-driven," Energy, Elsevier, vol. 307(C).
    8. Mikolajková, Markéta & Saxén, Henrik & Pettersson, Frank, 2018. "Linearization of an MINLP model and its application to gas distribution optimization," Energy, Elsevier, vol. 146(C), pages 156-168.
    9. Lars Schewe & Martin Schmidt & Johannes Thürauf, 2020. "Computing technical capacities in the European entry-exit gas market is NP-hard," Annals of Operations Research, Springer, vol. 295(1), pages 337-362, December.
    10. Kayse Lee Maass & Vera Mann Hey Lo & Anna Weiss & Mark S. Daskin, 2015. "Maximizing Diversity in the Engineering Global Leadership Cultural Families," Interfaces, INFORMS, vol. 45(4), pages 293-304, August.
    11. Gabriel Frahm, 2018. "An Intersection–Union Test for the Sharpe Ratio," Risks, MDPI, vol. 6(2), pages 1-13, April.
    12. Filipe Rodrigues & Agostinho Agra & Lars Magnus Hvattum & Cristina Requejo, 2021. "Weighted proximity search," Journal of Heuristics, Springer, vol. 27(3), pages 459-496, June.
    13. Conrado Borraz-Sánchez & Russell Bent & Scott Backhaus & Hassan Hijazi & Pascal Van Hentenryck, 2016. "Convex Relaxations for Gas Expansion Planning," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 645-656, November.
    14. Veronika Grimm & Lars Schewe & Martin Schmidt & Gregor Zöttl, 2019. "A multilevel model of the European entry-exit gas market," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(2), pages 223-255, April.
    15. Jürgen Fleiß & Ulrike Leopold‐Wildburger, 2014. "Once Nice, Always Nice? Results on Factors Influencing Nice Behavior from an Iterated Prisoner's Dilemma Experiment," Systems Research and Behavioral Science, Wiley Blackwell, vol. 31(2), pages 327-334, March.
    16. Huynh Van Ngai & Nguyen Huu Tron & Michel Théra, 2014. "Metric Regularity of the Sum of Multifunctions and Applications," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 355-390, February.
    17. Mayer, Stefan & Klein, Robert & Seiermann, Stephanie, 2013. "A simulation-based approach to price optimisation of the mixed bundling problem with capacity constraints," International Journal of Production Economics, Elsevier, vol. 145(2), pages 584-598.
    18. Carlo Andrea Bollino & Philipp Galkin, 2021. "Energy Security and Portfolio Diversification: Conventional and Novel Perspectives," Energies, MDPI, vol. 14(14), pages 1-24, July.
    19. Ralf Lenz & Kai Helge Becker, 2022. "Optimization of capacity expansion in potential-driven networks including multiple looping: a comparison of modelling approaches," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 179-224, March.
    20. Jan Pablo Burgard & Carina Moreira Costa & Martin Schmidt, 2024. "Robustification of the k-means clustering problem and tailored decomposition methods: when more conservative means more accurate," Annals of Operations Research, Springer, vol. 339(3), pages 1525-1568, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:94:y:2021:i:2:d:10.1007_s00186-021-00745-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.