IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v302y2024ics0360544224016104.html
   My bibliography  Save this article

Multi-period integrated scheduling optimization of complex natural gas pipeline network system with underground gas storage to ensure economic and environmental benefits

Author

Listed:
  • Peng, Jinghong
  • Zhou, Jun
  • Liang, Guangchuan
  • Li, Chengyu
  • Qin, Can

Abstract

Underground gas storage plays a crucial role in ensuring the supply and demand balance of natural gas pipeline network. However, the peak shaving function of underground gas storage or its injection-withdrawal hydraulic characteristics are often overlooked in the optimization of pipeline network scheduling. This paper develops an integrated scheduling optimization model of complex natural gas pipeline network system with underground gas storage, which responds to multi-period consumer demand changes to balance supply and demand, while considering both economic and environmental benefits. The optimization model comprehensively considers the elements of underground gas storage, including reservoir, injection-withdrawal well, and compressor group. A mixed integer linear programming relaxation method combining the linearization of univariate and bivariate functions and convex relaxation of feasible regions is designed. The case study results show that underground gas storage peak shaving function can effectively compensate for gas supply shortage. Compared to the non-relaxation method, the relaxation method reduced the transportation and injection-withdrawal energy cost by 10.21 % and 15.89 %, and carbon emissions by 20,426 tons. Furthermore, the study analyzed the advantages of the comprehensive underground gas storage model, the coordinated injection-withdrawal strategies of multiple underground gas storages, and the response strategies under system abnormal conditions.

Suggested Citation

  • Peng, Jinghong & Zhou, Jun & Liang, Guangchuan & Li, Chengyu & Qin, Can, 2024. "Multi-period integrated scheduling optimization of complex natural gas pipeline network system with underground gas storage to ensure economic and environmental benefits," Energy, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224016104
    DOI: 10.1016/j.energy.2024.131837
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224016104
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131837?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wen, Kai & Lu, Yangfan & Lu, Meitong & Zhang, Wenwei & Zhu, Ming & Qiao, Dan & Meng, Fanpeng & Zhang, Jing & Gong, Jing & Hong, Bingyuan, 2022. "Multi-period optimal infrastructure planning of natural gas pipeline network system integrating flowrate allocation," Energy, Elsevier, vol. 257(C).
    2. Ahmadian Behrooz, Hesam & Boozarjomehry, R. Bozorgmehry, 2017. "Dynamic optimization of natural gas networks under customer demand uncertainties," Energy, Elsevier, vol. 134(C), pages 968-983.
    3. Li, Fengyun & Li, Xingmei, 2022. "An empirical analysis on regional natural gas market of China from a spatial pattern and social network perspective," Energy, Elsevier, vol. 244(PA).
    4. Hong, Bingyuan & Qiao, Dan & Li, Yichen & Sun, Xiaoqing & Yang, Baolong & Li, Li & Gong, Jing & Wen, Kai, 2023. "Supply-demand balance of natural gas pipeline network integrating hydraulic and thermal characteristics, energy conservation and carbon reduction," Energy, Elsevier, vol. 283(C).
    5. Kuang, Yunming & Lin, Boqiang, 2022. "Natural gas resource utilization, environmental policy and green economic development: Empirical evidence from China," Resources Policy, Elsevier, vol. 79(C).
    6. Lars Schewe & Martin Schmidt & Johannes Thürauf, 2022. "Global optimization for the multilevel European gas market system with nonlinear flow models on trees," Journal of Global Optimization, Springer, vol. 82(3), pages 627-653, March.
    7. Yu, Weichao & Gong, Jing & Song, Shangfei & Huang, Weihe & Li, Yichen & Zhang, Jie & Hong, Bingyuan & Zhang, Ye & Wen, Kai & Duan, Xu, 2019. "Gas supply reliability analysis of a natural gas pipeline system considering the effects of underground gas storages," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    8. Vladislav Brkić & Ivan Zelenika & Petar Mijić & Igor Medved, 2021. "Underground Gas Storage Process Optimisation with Respect to Reservoir Parameters and Production Equipment," Energies, MDPI, vol. 14(14), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Ying & Koch, Thorsten & Zakiyeva, Nazgul & Zhu, Bangzhu, 2020. "Modeling and forecasting the dynamics of the natural gas transmission network in Germany with the demand and supply balance constraint," Applied Energy, Elsevier, vol. 278(C).
    2. Lin, Zijie & Xie, Linbo & Zhang, Siyuan, 2024. "A compound framework for short-term gas load forecasting combining time-enhanced perception transformer and two-stage feature extraction," Energy, Elsevier, vol. 298(C).
    3. Hong, Bingyuan & Qiao, Dan & Li, Yichen & Sun, Xiaoqing & Yang, Baolong & Li, Li & Gong, Jing & Wen, Kai, 2023. "Supply-demand balance of natural gas pipeline network integrating hydraulic and thermal characteristics, energy conservation and carbon reduction," Energy, Elsevier, vol. 283(C).
    4. Liu, Xinglei & Liu, Jun & Ren, Kezheng & Liu, Xiaoming & Liu, Jiacheng, 2022. "An integrated fuzzy multi-energy transaction evaluation approach for energy internet markets considering judgement credibility and variable rough precision," Energy, Elsevier, vol. 261(PB).
    5. Yu, Weichao & Huang, Weihe & Wen, Kai & Zhang, Jie & Liu, Hongfei & Wang, Kun & Gong, Jing & Qu, Chunxu, 2021. "Subset simulation-based reliability analysis of the corroding natural gas pipeline," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    6. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    7. Xuejie Li & Yuan Xue & Yuxing Li & Qingshan Feng, 2022. "An Optimization Method for a Compressor Standby Scheme Based on Reliability Analysis," Energies, MDPI, vol. 15(21), pages 1-16, November.
    8. Wen, Kai & Lu, Yangfan & Lu, Meitong & Zhang, Wenwei & Zhu, Ming & Qiao, Dan & Meng, Fanpeng & Zhang, Jing & Gong, Jing & Hong, Bingyuan, 2022. "Multi-period optimal infrastructure planning of natural gas pipeline network system integrating flowrate allocation," Energy, Elsevier, vol. 257(C).
    9. Zhou, Jun & Zhu, Jiaxing & Liang, Guangchuan & Ma, Junjie & He, Jiayi & Du, Penghua & Ye, Zhanpeng, 2024. "Three-layer and robust planning models to evaluate the strategies of defense layer, attack layer, and operation layer for optimal protection in natural gas pipeline network," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    10. Yu, Weichao & Song, Shangfei & Li, Yichen & Min, Yuan & Huang, Weihe & Wen, Kai & Gong, Jing, 2018. "Gas supply reliability assessment of natural gas transmission pipeline systems," Energy, Elsevier, vol. 162(C), pages 853-870.
    11. Wang, Qi & Miao, Cairan & Tang, Yi, 2022. "Power shortage support strategies considering unified gas-thermal inertia in an integrated energy system," Applied Energy, Elsevier, vol. 328(C).
    12. Zhao, Wei & Liao, Qi & Qiu, Rui & Liu, Chunying & Xu, Ning & Yu, Xiao & Liang, Yongtu, 2024. "Pipe sharing: A bilevel optimization model for the optimal capacity allocation of natural gas network," Applied Energy, Elsevier, vol. 359(C).
    13. Huiping Wang & Peiling Liu, 2023. "Spatial Correlation Network of Energy Consumption and Its Influencing Factors in the Yangtze River Delta Urban Agglomeration," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    14. Wen, Kai & Jiao, Jianfeng & Zhao, Kang & Yin, Xiong & Liu, Yuan & Gong, Jing & Li, Cuicui & Hong, Bingyuan, 2023. "Rapid transient operation control method of natural gas pipeline networks based on user demand prediction," Energy, Elsevier, vol. 264(C).
    15. Olfati, Mohammad & Bahiraei, Mehdi & Veysi, Farzad, 2019. "A novel modification on preheating process of natural gas in pressure reduction stations to improve energy consumption, exergy destruction and CO2 emission: Preheating based on real demand," Energy, Elsevier, vol. 173(C), pages 598-609.
    16. Xie, Mingjiang & Zhao, Jianli & Zuo, Ming J. & Tian, Zhigang & Liu, Libin & Wu, Jinming, 2023. "Multi-objective maintenance decision-making of corroded parallel pipeline systems," Applied Energy, Elsevier, vol. 351(C).
    17. Jia, Weidong & Gong, Chengzhu & Pan, Kai & Yu, Shiwei, 2023. "Potential changes of regional natural gas market in China amidst liberalization: A mixed complementarity equilibrium simulation in 2030," Energy, Elsevier, vol. 284(C).
    18. Kuang, Yunming & Lin, Boqiang, 2023. "Unwatched pollution reduction: The effect of natural gas utilization on air quality," Energy, Elsevier, vol. 273(C).
    19. Yan, Zhaojin & Yang, Guanghao & He, Rong & Yang, Hui & Ci, Hui, 2023. "“Ship-port-country” multi-dimensional research on the fine analysis of China's LNG trade," Journal of Transport Geography, Elsevier, vol. 110(C).
    20. Yu, Weichao & Huang, Weihe & Wen, Yunhao & Li, Yichen & Liu, Hongfei & Wen, Kai & Gong, Jing & Lu, Yanan, 2021. "An integrated gas supply reliability evaluation method of the large-scale and complex natural gas pipeline network based on demand-side analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224016104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.