IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223018212.html
   My bibliography  Save this article

Supply-demand balance of natural gas pipeline network integrating hydraulic and thermal characteristics, energy conservation and carbon reduction

Author

Listed:
  • Hong, Bingyuan
  • Qiao, Dan
  • Li, Yichen
  • Sun, Xiaoqing
  • Yang, Baolong
  • Li, Li
  • Gong, Jing
  • Wen, Kai

Abstract

Under the background of “One national network”, the balance between the natural gas supply side and the demand side is prominent. This paper proposes a supply-demand balance method of natural gas pipeline network coupled with the hydraulic and thermal characteristics, and decides the transportation scheme through flow rate allocation. This paper designs a two-stage relaxation optimization algorithm, coupled the thermal process into the hydraulic calculation to improve the hydraulic calculation accuracy, making the natural gas transportation scheme more applicable to engineering. The result shows the feasibility of transportation decision-making and the accuracy of hydro thermal calculation of the proposed model through a real case. The relative error of thermal calculation and TGNET is below 2%, and the hydraulic calculation error of coupled thermal can also be within 10%. After optimization, the carbon emissions decrease from 418,100 tons to 260,000 tons, reducing by about 37.81%. This study also analyzes the impact of hydraulic calculation on carbon emissions calculation, and further illustrates the necessity of coupled thermal characteristics in transportation scheme. This study can provide decision support for the transportation operation and help the natural gas pipeline network to meet the dual carbon requirements and achieve sustainable development.

Suggested Citation

  • Hong, Bingyuan & Qiao, Dan & Li, Yichen & Sun, Xiaoqing & Yang, Baolong & Li, Li & Gong, Jing & Wen, Kai, 2023. "Supply-demand balance of natural gas pipeline network integrating hydraulic and thermal characteristics, energy conservation and carbon reduction," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223018212
    DOI: 10.1016/j.energy.2023.128427
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223018212
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128427?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hong, Bingyuan & Li, Xiaoping & Song, Shangfei & Chen, Shilin & Zhao, Changlong & Gong, Jing, 2020. "Optimal planning and modular infrastructure dynamic allocation for shale gas production," Applied Energy, Elsevier, vol. 261(C).
    2. Wen, Kai & Qiao, Dan & Nie, Chaofei & Lu, Yangfan & Wen, Feng & Zhang, Jing & Miao, Qing & Gong, Jing & Li, Cuicui & Hong, Bingyuan, 2023. "Multi-period supply and demand balance of large-scale and complex natural gas pipeline network: Economy and environment," Energy, Elsevier, vol. 264(C).
    3. Safaie, Amir Abbas & Alizadeh Bidgoli, Mohsen & Javadi, Saeid, 2022. "A multi-objective optimization framework for integrated electricity and natural gas networks considering smart homes in downward under uncertainties," Energy, Elsevier, vol. 239(PC).
    4. Wen, Kai & Lu, Yangfan & Lu, Meitong & Zhang, Wenwei & Zhu, Ming & Qiao, Dan & Meng, Fanpeng & Zhang, Jing & Gong, Jing & Hong, Bingyuan, 2022. "Multi-period optimal infrastructure planning of natural gas pipeline network system integrating flowrate allocation," Energy, Elsevier, vol. 257(C).
    5. Zhao, Yongning & Xu, Xiandong & Qadrdan, Meysam & Wu, Jianzhong, 2021. "Optimal operation of compressor units in gas networks to provide flexibility to power systems," Applied Energy, Elsevier, vol. 290(C).
    6. Wei, Xintong & Qiu, Rui & Liang, Yongtu & Liao, Qi & Klemeš, Jiří Jaromír & Xue, Jinjun & Zhang, Haoran, 2022. "Roadmap to carbon emissions neutral industrial parks: Energy, economic and environmental analysis," Energy, Elsevier, vol. 238(PA).
    7. Zhang, Xin & Liao, Qi & Wang, Qiang & Wang, Limin & Qiu, Rui & Liang, Yongtu & Zhang, Haoran, 2021. "How to promote zero-carbon oilfield target? A technical-economic model to analyze the economic and environmental benefits of Recycle-CCS-EOR project," Energy, Elsevier, vol. 225(C).
    8. Ahmadian Behrooz, Hesam & Boozarjomehry, R. Bozorgmehry, 2017. "Dynamic optimization of natural gas networks under customer demand uncertainties," Energy, Elsevier, vol. 134(C), pages 968-983.
    9. Li, Zhengbing & Liang, Yongtu & Ni, Weilong & Liao, Qi & Xu, Ning & Li, Lichao & Zheng, Jianqin & Zhang, Haoran, 2022. "Pipesharing: economic-environmental benefits from transporting biofuels through multiproduct pipelines," Applied Energy, Elsevier, vol. 311(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Zijie & Xie, Linbo & Zhang, Siyuan, 2024. "A compound framework for short-term gas load forecasting combining time-enhanced perception transformer and two-stage feature extraction," Energy, Elsevier, vol. 298(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen, Kai & Qiao, Dan & Nie, Chaofei & Lu, Yangfan & Wen, Feng & Zhang, Jing & Miao, Qing & Gong, Jing & Li, Cuicui & Hong, Bingyuan, 2023. "Multi-period supply and demand balance of large-scale and complex natural gas pipeline network: Economy and environment," Energy, Elsevier, vol. 264(C).
    2. Fengyuan Yan & Xiaolong Han & Qianwei Cheng & Yamin Yan & Qi Liao & Yongtu Liang, 2022. "Scenario-Based Comparative Analysis for Coupling Electricity and Hydrogen Storage in Clean Oilfield Energy Supply System," Energies, MDPI, vol. 15(6), pages 1-28, March.
    3. Hong, Bingyuan & Du, Zhaonan & Qiao, Dan & Liu, Daiwei & Li, Yu & Sun, Xiaoqing & Gong, Jing & Zhang, Hongyu & Li, Xiaoping, 2024. "Sustainable supply chain of distributed multi-product gas fields based on skid-mounted equipment to dynamically respond to upstream and market fluctuations," Energy, Elsevier, vol. 292(C).
    4. Yin, Xiong & Wen, Kai & Huang, Weihe & Luo, Yinwei & Ding, Yi & Gong, Jing & Gao, Jianfeng & Hong, Bingyuan, 2023. "A high-accuracy online transient simulation framework of natural gas pipeline network by integrating physics-based and data-driven methods," Applied Energy, Elsevier, vol. 333(C).
    5. Noor Yusuf & Tareq Al-Ansari, 2023. "Current and Future Role of Natural Gas Supply Chains in the Transition to a Low-Carbon Hydrogen Economy: A Comprehensive Review on Integrated Natural Gas Supply Chain Optimisation Models," Energies, MDPI, vol. 16(22), pages 1-33, November.
    6. Wang, Guotao & Zhao, Wei & Qiu, Rui & Liao, Qi & Lin, Zhenjia & Wang, Chang & Zhang, Haoran, 2023. "Operational optimization of large-scale thermal constrained natural gas pipeline networks: A novel iterative decomposition approach," Energy, Elsevier, vol. 282(C).
    7. Zhang, Zhonglian & Yang, Xiaohui & Li, Moxuan & Deng, Fuwei & Xiao, Riying & Mei, Linghao & Hu, Zecheng, 2023. "Optimal configuration of improved dynamic carbon neutral energy systems based on hybrid energy storage and market incentives," Energy, Elsevier, vol. 284(C).
    8. Bingyuan Hong & Yanbo Li & Xiaoping Li & Shuaipeng Ji & Yafeng Yu & Di Fan & Yating Qian & Jian Guo & Jing Gong, 2021. "Numerical Simulation of Gas-Solid Two-Phase Erosion for Elbow and Tee Pipe in Gas Field," Energies, MDPI, vol. 14(20), pages 1-18, October.
    9. Silvestre, Inês & Pastor, Ricardo & Neto, Rui Costa, 2023. "Power losses in natural gas and hydrogen transmission in the Portuguese high-pressure network," Energy, Elsevier, vol. 272(C).
    10. Du, Weijian & Li, Mengjie, 2023. "Opening the black box of environmental governance: Environmental target constraints and industrial firm pollution reduction," Energy, Elsevier, vol. 283(C).
    11. Han, Yongming & Cao, Lian & Guo, Qing & Geng, Zhiqiang & Yang, Weiyang & Fan, Jinzhen & Liu, Min, 2024. "Economy and carbon dioxide emissions effects of energy structures in China: Evidence based on a novel AHP-SBMDEA model," Energy, Elsevier, vol. 290(C).
    12. Andres Soage & Ruben Juanes & Ignasi Colominas & Luis Cueto-Felgueroso, 2024. "Optimization of Financial Indicators in Shale-Gas Wells Combining Numerical Decline Curve Analysis and Economic Data Analysis," Energies, MDPI, vol. 17(4), pages 1-25, February.
    13. Yu, Weichao & Song, Shangfei & Li, Yichen & Min, Yuan & Huang, Weihe & Wen, Kai & Gong, Jing, 2018. "Gas supply reliability assessment of natural gas transmission pipeline systems," Energy, Elsevier, vol. 162(C), pages 853-870.
    14. Anastasovski, Aleksandar, 2023. "What is needed for transformation of industrial parks into potential positive energy industrial parks? A review," Energy Policy, Elsevier, vol. 173(C).
    15. Du, Yanxiang & Liang, Jin & Yang, Shiliang & Hu, Jianhang & Bao, Guirong & Wang, Hua, 2022. "Numerical investigation of the Ni-based catalytic methanation process in a bubbling fluidized bed reactor," Energy, Elsevier, vol. 257(C).
    16. Mansouri, S.A. & Ahmarinejad, A. & Nematbakhsh, E. & Javadi, M.S. & Esmaeel Nezhad, A. & Catalão, J.P.S., 2022. "A sustainable framework for multi-microgrids energy management in automated distribution network by considering smart homes and high penetration of renewable energy resources," Energy, Elsevier, vol. 245(C).
    17. Xuwei Tang & Qi Zhang & Chunxin Li & Haitao Zhang & Haiyun Xu, 2023. "The Effects and Driving Factors of Low-Carbon Transition of International Oil Companies: Evidence from a Super-SBM Model," Energies, MDPI, vol. 17(1), pages 1-19, December.
    18. Wen, Kai & Jiao, Jianfeng & Zhao, Kang & Yin, Xiong & Liu, Yuan & Gong, Jing & Li, Cuicui & Hong, Bingyuan, 2023. "Rapid transient operation control method of natural gas pipeline networks based on user demand prediction," Energy, Elsevier, vol. 264(C).
    19. Chen, Ying & Koch, Thorsten & Zakiyeva, Nazgul & Zhu, Bangzhu, 2020. "Modeling and forecasting the dynamics of the natural gas transmission network in Germany with the demand and supply balance constraint," Applied Energy, Elsevier, vol. 278(C).
    20. Olfati, Mohammad & Bahiraei, Mehdi & Veysi, Farzad, 2019. "A novel modification on preheating process of natural gas in pressure reduction stations to improve energy consumption, exergy destruction and CO2 emission: Preheating based on real demand," Energy, Elsevier, vol. 173(C), pages 598-609.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223018212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.