IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v49y2019i1p23-39.html
   My bibliography  Save this article

Operations Research Enables Better Planning of Natural Gas Pipelines

Author

Listed:
  • Jingkuan Han

    (Oil and Gas Pipeline Engineering Department, China Petroleum Planning and Engineering Institute, China National Petroleum Corporation, Beijing, China 100083)

  • Yingjun Xu

    (Oil and Gas Pipeline Engineering Department, China Petroleum Planning and Engineering Institute, China National Petroleum Corporation, Beijing, China 100083)

  • Dingzhi Liu

    (Oil and Gas Pipeline Engineering Department, China Petroleum Planning and Engineering Institute, China National Petroleum Corporation, Beijing, China 100083)

  • Yanfang Zhao

    (Oil and Gas Pipeline Engineering Department, China Petroleum Planning and Engineering Institute, China National Petroleum Corporation, Beijing, China 100083)

  • Zhongde Zhao

    (Oil and Gas Pipeline Engineering Department, China Petroleum Planning and Engineering Institute, China National Petroleum Corporation, Beijing, China 100083)

  • Shuhui Zhou

    (Oil and Gas Pipeline Engineering Department, China Petroleum Planning and Engineering Institute, China National Petroleum Corporation, Beijing, China 100083)

  • Tianhu Deng

    (Department of Industrial Engineering, Tsinghua University, Beijing, China 100084)

  • Mengying Xue

    (Department of Industrial Engineering, Tsinghua University, Beijing, China 100084)

  • Junchi Ye

    (Department of Industrial Engineering, Tsinghua University, Beijing, China 100084)

  • Zuo-Jun Max Shen

    (Department of Industrial Engineering and Operations Research and Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720-1777)

Abstract

China’s natural gas consumption has nearly doubled over the last five years. To better meet demand, the China National Petroleum Corporation (CNPC), China’s largest oil and natural gas producer and supplier, partnered with researchers from the University of California, Berkeley, and Tsinghua University in Beijing to apply innovative operations research to develop and implement new software that helps CNPC improve the management of its gas pipeline network. Previously, all pipeline production and construction planning for CNPC, which controls 72% of the country’s natural gas resources and 70% of its pipeline network, was conducted by traditional methods using spreadsheets. However, because of the network’s increasing size and complexity, using the traditional method resulted in excess costs and wasted resources. Since the implementation of the new software, which uses a three-stage convex relaxation method and iterative piecewise linear approximation methods, at the end of 2014, CNPC has realized approximately $530 million in increased profits. Moreover, the resulting increased efficiency of the existing pipeline network allowed the company to postpone adding new pipelines, leading to an official budget reduction of over $20 billion in construction costs for the subsequent five years.

Suggested Citation

  • Jingkuan Han & Yingjun Xu & Dingzhi Liu & Yanfang Zhao & Zhongde Zhao & Shuhui Zhou & Tianhu Deng & Mengying Xue & Junchi Ye & Zuo-Jun Max Shen, 2019. "Operations Research Enables Better Planning of Natural Gas Pipelines," Interfaces, INFORMS, vol. 49(1), pages 23-39, January.
  • Handle: RePEc:inm:orinte:v:49:y:2019:i:1:p:23-39
    DOI: 10.1287/inte.2018.0974
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/inte.2018.0974
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.2018.0974?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andre, Jean & Bonnans, Frédéric & Cornibert, Laurent, 2009. "Optimization of capacity expansion planning for gas transportation networks," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1019-1027, September.
    2. Mengying Xue & Tianhu Deng & Dingzhi Liu, 2016. "CNPC Uses an Iterative Two-Stage Convex Relaxation Approach to Operate Natural Gas Pipelines," Interfaces, INFORMS, vol. 46(6), pages 533-546, December.
    3. Frode Rømo & Asgeir Tomasgard & Lars Hellemo & Marte Fodstad & Bjørgulf Haukelidsæter Eidesen & Birger Pedersen, 2009. "Optimizing the Norwegian Natural Gas Production and Transport," Interfaces, INFORMS, vol. 39(1), pages 46-56, February.
    4. DE WOLF, Daniel & SMEERS, Yves, 2000. "The gas transmission problem solved by an extension of the simplex algorithm," LIDAM Reprints CORE 1489, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. De Wolf, D. & Smeers, Y., 1996. "Optimal dimensioning of pipe networks with application to gas transmission networks," LIDAM Reprints CORE 1249, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Daniel de Wolf & Yves Smeers, 1996. "Optimal Dimensioning of Pipe Networks with Application to Gas Transmission Networks," Operations Research, INFORMS, vol. 44(4), pages 596-608, August.
    7. André, Jean & Auray, Stéphane & Brac, Jean & De Wolf, Daniel & Maisonnier, Guy & Ould-Sidi, Mohamed-Mahmoud & Simonnet, Antoine, 2013. "Design and dimensioning of hydrogen transmission pipeline networks," European Journal of Operational Research, Elsevier, vol. 229(1), pages 239-251.
    8. Conrado Borraz-Sánchez & Russell Bent & Scott Backhaus & Hassan Hijazi & Pascal Van Hentenryck, 2016. "Convex Relaxations for Gas Expansion Planning," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 645-656, November.
    9. Daniel De Wolf & Yves Smeers, 2000. "The Gas Transmission Problem Solved by an Extension of the Simplex Algorithm," Management Science, INFORMS, vol. 46(11), pages 1454-1465, November.
    10. Frédéric Babonneau & Yurii Nesterov & Jean-Philippe Vial, 2012. "Design and Operations of Gas Transmission Networks," Operations Research, INFORMS, vol. 60(1), pages 34-47, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Guotao & Zhao, Wei & Qiu, Rui & Liao, Qi & Lin, Zhenjia & Wang, Chang & Zhang, Haoran, 2023. "Operational optimization of large-scale thermal constrained natural gas pipeline networks: A novel iterative decomposition approach," Energy, Elsevier, vol. 282(C).
    2. Mengying Xue & Tianhu Deng & Zuo‐Jun Max Shen, 2019. "Optimizing natural gas pipeline transmission with nonuniform elevation: A new initialization approach," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 547-564, October.
    3. Wen, Kai & Lu, Yangfan & Lu, Meitong & Zhang, Wenwei & Zhu, Ming & Qiao, Dan & Meng, Fanpeng & Zhang, Jing & Gong, Jing & Hong, Bingyuan, 2022. "Multi-period optimal infrastructure planning of natural gas pipeline network system integrating flowrate allocation," Energy, Elsevier, vol. 257(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengying Xue & Tianhu Deng & Zuo‐Jun Max Shen, 2019. "Optimizing natural gas pipeline transmission with nonuniform elevation: A new initialization approach," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 547-564, October.
    2. Ralf Lenz & Kai Helge Becker, 2022. "Optimization of capacity expansion in potential-driven networks including multiple looping: a comparison of modelling approaches," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 179-224, March.
    3. Conrado Borraz-Sánchez & Russell Bent & Scott Backhaus & Hassan Hijazi & Pascal Van Hentenryck, 2016. "Convex Relaxations for Gas Expansion Planning," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 645-656, November.
    4. repec:cty:dpaper:10.1080/0013791x.2011.573615 is not listed on IDEAS
    5. Daniel de Wolf, 2017. "Mathematical Properties of Formulations of the Gas Transmission Problem," Post-Print halshs-02396747, HAL.
    6. Liang, Yingzong & Hui, Chi Wai, 2018. "Convexification for natural gas transmission networks optimization," Energy, Elsevier, vol. 158(C), pages 1001-1016.
    7. repec:cty:dpaper:1464 is not listed on IDEAS
    8. Frédéric Babonneau & Yurii Nesterov & Jean-Philippe Vial, 2012. "Design and Operations of Gas Transmission Networks," Operations Research, INFORMS, vol. 60(1), pages 34-47, February.
    9. Olivier Massol, 2011. "A Cost Function for the Natural Gas Transmission Industry: Further Considerations," The Engineering Economist, Taylor & Francis Journals, vol. 56(2), pages 95-122.
    10. Jesco Humpola & Armin Fügenschuh, 2015. "Convex reformulations for solving a nonlinear network design problem," Computational Optimization and Applications, Springer, vol. 62(3), pages 717-759, December.
    11. Mengying Xue & Tianhu Deng & Dingzhi Liu, 2016. "CNPC Uses an Iterative Two-Stage Convex Relaxation Approach to Operate Natural Gas Pipelines," Interfaces, INFORMS, vol. 46(6), pages 533-546, December.
    12. Massol, Olivier & Tchung-Ming, Stéphane & Banal-Estañol, Albert, 2015. "Joining the CCS club! The economics of CO2 pipeline projects," European Journal of Operational Research, Elsevier, vol. 247(1), pages 259-275.
    13. Dieckhoener, Caroline, 2010. "Simulating security of supply effects of the Nabucco and South Stream projects for the European natural gas market," EWI Working Papers 2010-7, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 21 Jan 2012.
    14. Daniel de Wolf & Yves Smeers, 2021. "Generalized derivatives of the optimal value of a linear program with respect to matrix coefficients," Post-Print halshs-02396708, HAL.
    15. Shiono, Naoshi & Suzuki, Hisatoshi, 2016. "Optimal pipe-sizing problem of tree-shaped gas distribution networks," European Journal of Operational Research, Elsevier, vol. 252(2), pages 550-560.
    16. Mikolajková, Markéta & Haikarainen, Carl & Saxén, Henrik & Pettersson, Frank, 2017. "Optimization of a natural gas distribution network with potential future extensions," Energy, Elsevier, vol. 125(C), pages 848-859.
    17. Jesco Humpola & Felipe Serrano, 2017. "Sufficient pruning conditions for MINLP in gas network design," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 239-261, March.
    18. De Wolf, Daniel & Smeers, Yves, 2021. "Generalized derivatives of the optimal value of a linear program with respect to matrix coefficients," European Journal of Operational Research, Elsevier, vol. 291(2), pages 491-496.
    19. André, Jean & Auray, Stéphane & Brac, Jean & De Wolf, Daniel & Maisonnier, Guy & Ould-Sidi, Mohamed-Mahmoud & Simonnet, Antoine, 2013. "Design and dimensioning of hydrogen transmission pipeline networks," European Journal of Operational Research, Elsevier, vol. 229(1), pages 239-251.
    20. Jesco Humpola & Armin Fügenschuh & Thorsten Koch, 2016. "Valid inequalities for the topology optimization problem in gas network design," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(3), pages 597-631, July.
    21. Mikolajková, Markéta & Saxén, Henrik & Pettersson, Frank, 2018. "Linearization of an MINLP model and its application to gas distribution optimization," Energy, Elsevier, vol. 146(C), pages 156-168.
    22. Hong, Sung-Pil & Kim, Taegyoon & Lee, Subin, 2019. "A precision pump schedule optimization for the water supply networks with small buffers," Omega, Elsevier, vol. 82(C), pages 24-37.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:49:y:2019:i:1:p:23-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.