IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i4p690-d207776.html
   My bibliography  Save this article

Wind Turbines from the Swedish Wind Energy Program and the Subsequent Commercialization Attempts—A Historical Review

Author

Listed:
  • Erik Möllerström

    (The Rydberg Laboratory for Applied Sciences, Halmstad University, PO Box 823, SE-301 18 Halmstad, Sweden)

Abstract

This paper summarizes wind turbines of Swedish origin, 50 kW and above. Both the large governmental-funded prototypes from the early 1980s and following attempts to build commercial turbines are covered. After the 1973 oil crisis, a development program for wind turbine technology was initiated in Sweden, culminating in the early 1980s with the 2 and 3-MW machines at Maglarp and Näsudden. However, government interest declined, and Sweden soon lost its position as one of the leading countries regarding wind turbine development. Nevertheless, several attempts to build commercial wind turbines in Sweden were made in the following decades. Most attempts have, like the earlier prototypes, used a two-bladed rotor, which has become synonymous with the Swedish wind turbine development line. The current ongoing Swedish endeavors primarily focus on the niche-concept of vertical axis wind turbines (VAWTs), which is a demonstration of how far from the broad commercial market of Sweden has moved. Thus far, none of the Swedish attempts have been commercially successful, and unlike countries like Denmark or Germany, Sweden currently has no large wind turbine producer. Suggested reasons include early government interventions focusing on two-bladed prototypes and political disinterest, with wind power grants cut in half by 1985, and the domestic industry not being favored in government policies for deploying wind power.

Suggested Citation

  • Erik Möllerström, 2019. "Wind Turbines from the Swedish Wind Energy Program and the Subsequent Commercialization Attempts—A Historical Review," Energies, MDPI, vol. 12(4), pages 1-12, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:690-:d:207776
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/4/690/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/4/690/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ackermann, Thomas & Söder, Lennart, 2002. "An overview of wind energy-status 2002," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(1-2), pages 67-127.
    2. Astrand, K. & Neij, L., 2006. "An assessment of governmental wind power programmes in Sweden--using a systems approach," Energy Policy, Elsevier, vol. 34(3), pages 277-296, February.
    3. Möllerström, Erik & Gipe, Paul & Beurskens, Jos & Ottermo, Fredric, 2019. "A historical review of vertical axis wind turbines rated 100 kW and above," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 1-13.
    4. Senad Apelfröjd & Sandra Eriksson & Hans Bernhoff, 2016. "A Review of Research on Large Scale Modern Vertical Axis Wind Turbines at Uppsala University," Energies, MDPI, vol. 9(7), pages 1-16, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Möllerström, Erik & Gipe, Paul & Beurskens, Jos & Ottermo, Fredric, 2019. "A historical review of vertical axis wind turbines rated 100 kW and above," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 1-13.
    2. Krzysztof Rogowski & Martin Otto Laver Hansen & Galih Bangga, 2020. "Performance Analysis of a H-Darrieus Wind Turbine for a Series of 4-Digit NACA Airfoils," Energies, MDPI, vol. 13(12), pages 1-28, June.
    3. Eskin, N. & Artar, H. & Tolun, S., 2008. "Wind energy potential of Gökçeada Island in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 839-851, April.
    4. Valentine, Scott Victor, 2011. "Understanding the variability of wind power costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3632-3639.
    5. Sunak, Yasin & Madlener, Reinhard, 2012. "The Impact of Wind Farms on Property Values: A Geographically Weighted Hedonic Pricing Model," FCN Working Papers 3/2012, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised Mar 2013.
    6. Harborne, Paul & Hendry, Chris, 2009. "Pathways to commercial wind power in the US, Europe and Japan: The role of demonstration projects and field trials in the innovation process," Energy Policy, Elsevier, vol. 37(9), pages 3580-3595, September.
    7. Skroufouta, S. & Baltas, E., 2021. "Investigation of hybrid renewable energy system (HRES) for covering energy and water needs on the Island of Karpathos in Aegean Sea," Renewable Energy, Elsevier, vol. 173(C), pages 141-150.
    8. Xiangyuan Zheng & Huadong Zheng & Yu Lei & Yi Li & Wei Li, 2020. "An Offshore Floating Wind–Solar–Aquaculture System: Concept Design and Extreme Response in Survival Conditions," Energies, MDPI, vol. 13(3), pages 1-23, January.
    9. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    10. Islam, M.R. & Saidur, R. & Rahim, N.A., 2011. "Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function," Energy, Elsevier, vol. 36(2), pages 985-992.
    11. del Río, Pablo & Peñasco, Cristina & Mir-Artigues, Pere, 2018. "An overview of drivers and barriers to concentrated solar power in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1019-1029.
    12. IlkIlIç, Cumali & AydIn, Hüseyin & Behçet, Rasim, 2011. "The current status of wind energy in Turkey and in the world," Energy Policy, Elsevier, vol. 39(2), pages 961-967, February.
    13. Valentine, Scott Victor, 2010. "Canada's constitutional separation of (wind) power," Energy Policy, Elsevier, vol. 38(4), pages 1918-1930, April.
    14. Alam, Md. Mahbub & Rehman, Shafiqur & Meyer, Josua P. & Al-Hadhrami, Luai M., 2011. "Review of 600–2500kW sized wind turbines and optimization of hub height for maximum wind energy yield realization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3839-3849.
    15. Charlie Wilson & Arnulf Grubler, 2011. "Lessons from the history of technological change for clean energy scenarios and policies," Natural Resources Forum, Blackwell Publishing, vol. 35(3), pages 165-184, August.
    16. Haas, Christian & Kempa, Karol & Moslener, Ulf, 2023. "Dealing with deep uncertainty in the energy transition: What we can learn from the electricity and transportation sectors," Energy Policy, Elsevier, vol. 179(C).
    17. Bueno, C. & Carta, J.A., 2006. "Wind powered pumped hydro storage systems, a means of increasing the penetration of renewable energy in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 312-340, August.
    18. Fjaestad, Maja, 2013. "Winds of time: Lessons from Utö in the Stockholm Archipelago, 1990–2001," Energy Policy, Elsevier, vol. 62(C), pages 124-130.
    19. del Rio, Pablo & Gual, Miguel A., 2007. "An integrated assessment of the feed-in tariff system in Spain," Energy Policy, Elsevier, vol. 35(2), pages 994-1012, February.
    20. del Río, Pablo, 2012. "The dynamic efficiency of feed-in tariffs: The impact of different design elements," Energy Policy, Elsevier, vol. 41(C), pages 139-151.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:690-:d:207776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.