IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v159y2022ics1364032122001423.html
   My bibliography  Save this article

Changes in wind energy potential over China using a regional climate model ensemble

Author

Listed:
  • Zhuo, Chen
  • Junhong, Guo
  • Wei, Li
  • Fei, Zhang
  • Chan, Xiao
  • Zhangrong, Pan

Abstract

The goal of carbon neutrality provides a new opportunity for the development of renewable energy, especially for wind power. In this paper, 11 regional climate models (RCMs) including CORDEX-EA and PRECIS at two different resolutions are used to evaluate the performance in simulating the spatio-temporal characteristics for wind speed and energy potential from 1981 to 2005. The results show that most models can reproduce the spatio-temporal patterns, and the simulation of the eastern region is better than that of the western region. Besides, most of the higher-resolution models had better simulation performance for spatial-temporal patterns and inter-annual variation. Then, the weighted multi-model ensemble is used to project the changes of the wind speed and the wind power density over China's mainland during the mid-21st century under the RCP8.5 scenario. In future, a decrease in wind speed is projected by most RCMs over China, although some regions, such as the southern parts of China, are projected to have more wind energy potential. The percentage variation of annual mean wind speed will remain in the range of ±4%. The wind power density will decrease in the north and the largest decrease will be found in the northwest. However, the annual mean wind power density in the southeast China will have an increase of 2.21% in the middle of this century. The inter-annual variation of the wind power density in most regions will increase by more than 20%. However, intra-annual variation in the wind power density is likely to decrease in most regions of China, ranging from about −20% to −50%.

Suggested Citation

  • Zhuo, Chen & Junhong, Guo & Wei, Li & Fei, Zhang & Chan, Xiao & Zhangrong, Pan, 2022. "Changes in wind energy potential over China using a regional climate model ensemble," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
  • Handle: RePEc:eee:rensus:v:159:y:2022:i:c:s1364032122001423
    DOI: 10.1016/j.rser.2022.112219
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122001423
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112219?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Kyeongseok & Kim, Byungil & Kim, Hyoungkwan, 2018. "A decision-making model for the analysis of offshore wind farm projects under climate uncertainties: A case study of South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 853-860.
    2. Gao, Yang & Ma, Shaoxiu & Wang, Tao, 2019. "The impact of climate change on wind power abundance and variability in China," Energy, Elsevier, vol. 189(C).
    3. Zhuo Chen & Wei Li & Junhong Guo & Zhe Bao & Zhangrong Pan & Baodeng Hou, 2020. "Projection of Wind Energy Potential over Northern China Using a Regional Climate Model," Sustainability, MDPI, vol. 12(10), pages 1-16, May.
    4. Solaun, Kepa & Cerdá, Emilio, 2020. "Impacts of climate change on wind energy power – Four wind farms in Spain," Renewable Energy, Elsevier, vol. 145(C), pages 1306-1316.
    5. Liu, Fa & Sun, Fubao & Liu, Wenbin & Wang, Tingting & Wang, Hong & Wang, Xunming & Lim, Wee Ho, 2019. "On wind speed pattern and energy potential in China," Applied Energy, Elsevier, vol. 236(C), pages 867-876.
    6. Costoya, X. & deCastro, M. & Santos, F. & Sousa, M.C. & Gómez-Gesteira, M., 2019. "Projections of wind energy resources in the Caribbean for the 21st century," Energy, Elsevier, vol. 178(C), pages 356-367.
    7. Sahu, Bikash Kumar, 2018. "Wind energy developments and policies in China: A short review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1393-1405.
    8. Costoya, X. & deCastro, M. & Carvalho, D. & Feng, Z. & Gómez-Gesteira, M., 2021. "Climate change impacts on the future offshore wind energy resource in China," Renewable Energy, Elsevier, vol. 175(C), pages 731-747.
    9. Santos, F. & Gómez-Gesteira, M. & deCastro, M. & Añel, J.A. & Carvalho, D. & Costoya, Xurxo & Dias, J.M., 2018. "On the accuracy of CORDEX RCMs to project future winds over the Iberian Peninsula and surrounding ocean," Applied Energy, Elsevier, vol. 228(C), pages 289-300.
    10. Chen, Liang, 2020. "Impacts of climate change on wind resources over North America based on NA-CORDEX," Renewable Energy, Elsevier, vol. 153(C), pages 1428-1438.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Zihao & Dong, Sheng, 2024. "A novel framework for wind energy assessment at multi-time scale based on non-stationary wind speed models: A case study in China," Renewable Energy, Elsevier, vol. 226(C).
    2. Fuquan Zhao & Fanlong Bai & Xinglong Liu & Zongwei Liu, 2022. "A Review on Renewable Energy Transition under China’s Carbon Neutrality Target," Sustainability, MDPI, vol. 14(22), pages 1-27, November.
    3. Martinez, A. & Iglesias, G., 2024. "Global wind energy resources decline under climate change," Energy, Elsevier, vol. 288(C).
    4. Guo, Junhong & Chen, Zhuo & Meng, Jing & Zheng, Heran & Fan, Yuri & Ji, Ling & Wang, Xiuquan & Liang, Xi, 2024. "Picturing China's photovoltaic energy future: Insights from CMIP6 climate projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    5. Zhang, Zeyu & Liang, Yushi & Xue, Xinyue & Li, Yan & Zhang, Mulan & Li, Yiran & Ji, Xiaodong, 2024. "China's future wind energy considering air density during climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jung, Christopher & Schindler, Dirk, 2022. "A review of recent studies on wind resource projections under climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    2. He, J.Y. & Li, Q.S. & Chan, P.W. & Zhao, X.D., 2023. "Assessment of future wind resources under climate change using a multi-model and multi-method ensemble approach," Applied Energy, Elsevier, vol. 329(C).
    3. Nagababu, Garlapati & Srinivas, Bhasuru Abhinaya & Kachhwaha, Surendra Singh & Puppala, Harish & Kumar, Surisetty V.V.Arun, 2023. "Can offshore wind energy help to attain carbon neutrality amid climate change? A GIS-MCDM based analysis to unravel the facts using CORDEX-SA," Renewable Energy, Elsevier, vol. 219(P1).
    4. deCastro, M. & Rusu, L. & Arguilé-Pérez, B. & Ribeiro, A. & Costoya, X. & Carvalho, D. & Gómez-Gesteira, M., 2024. "Different approaches to analyze the impact of future climate change on the exploitation of wave energy," Renewable Energy, Elsevier, vol. 220(C).
    5. Gao, Yang & Ma, Shaoxiu & Wang, Tao & Miao, Changhong & Yang, Fan, 2022. "Distributed onshore wind farm siting using intelligent optimization algorithm based on spatial and temporal variability of wind energy," Energy, Elsevier, vol. 258(C).
    6. Costoya, X. & deCastro, M. & Carvalho, D. & Arguilé-Pérez, B. & Gómez-Gesteira, M., 2022. "Combining offshore wind and solar photovoltaic energy to stabilize energy supply under climate change scenarios: A case study on the western Iberian Peninsula," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    7. Abdelaziz, Sara & Sparrow, Sarah N. & Hua, Weiqi & Wallom, David C.H., 2024. "Assessing long-term future climate change impacts on extreme low wind events for offshore wind turbines in the UK exclusive economic zone," Applied Energy, Elsevier, vol. 354(PB).
    8. Carvalho, D. & Rocha, A. & Costoya, X. & deCastro, M. & Gómez-Gesteira, M., 2021. "Wind energy resource over Europe under CMIP6 future climate projections: What changes from CMIP5 to CMIP6," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    9. Liang, Yushi & Wu, Chunbing & Ji, Xiaodong & Zhang, Mulan & Li, Yiran & He, Jianjun & Qin, Zhiheng, 2022. "Estimation of the influences of spatiotemporal variations in air density on wind energy assessment in China based on deep neural network," Energy, Elsevier, vol. 239(PC).
    10. Zhong, Xiaohui & Chen, Tao & Sun, Xiangyu & Song, Juanjuan & Zeng, Jiajun, 2022. "Conventional and advanced exergy analysis of a novel wind-to-heat system," Energy, Elsevier, vol. 261(PA).
    11. Li, Jiangxia & Pan, Shunqi & Chen, Yongping & Yao, Yu & Xu, Conghao, 2022. "Assessment of combined wind and wave energy in the tropical cyclone affected region:An application in China seas," Energy, Elsevier, vol. 260(C).
    12. Zhuo Chen & Wei Li & Junhong Guo & Zhe Bao & Zhangrong Pan & Baodeng Hou, 2020. "Projection of Wind Energy Potential over Northern China Using a Regional Climate Model," Sustainability, MDPI, vol. 12(10), pages 1-16, May.
    13. Martinez, A. & Iglesias, G., 2024. "Global wind energy resources decline under climate change," Energy, Elsevier, vol. 288(C).
    14. Gao, Qiang & Hayward, Jennifer A. & Sergiienko, Nataliia & Khan, Salman Saeed & Hemer, Mark & Ertugrul, Nesimi & Ding, Boyin, 2024. "Detailed mapping of technical capacities and economics potential of offshore wind energy: A case study in South-eastern Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    15. Costoya, X. & deCastro, M. & Carvalho, D. & Gómez-Gesteira, M., 2020. "On the suitability of offshore wind energy resource in the United States of America for the 21st century," Applied Energy, Elsevier, vol. 262(C).
    16. Liu, Weiwei & Song, Yifan & Bi, Kexin, 2021. "Exploring the patent collaboration network of China's wind energy industry: A study based on patent data from CNIPA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    17. Kumarasamy Palanimuthu & Ganesh Mayilsamy & Ameerkhan Abdul Basheer & Seong-Ryong Lee & Dongran Song & Young Hoon Joo, 2022. "A Review of Recent Aerodynamic Power Extraction Challenges in Coordinated Pitch, Yaw, and Torque Control of Large-Scale Wind Turbine Systems," Energies, MDPI, vol. 15(21), pages 1-27, November.
    18. Cheng, Xu & Yan, Bowen & Zhou, Xuhong & Yang, Qingshan & Huang, Guoqing & Su, Yanwen & Yang, Wei & Jiang, Yan, 2024. "Wind resource assessment at mountainous wind farm: Fusion of RANS and vertical multi-point on-site measured wind field data," Applied Energy, Elsevier, vol. 363(C).
    19. Justė Jankevičienė & Arvydas Kanapickas, 2021. "Projected Near-Surface Wind Speed Trends in Lithuania," Energies, MDPI, vol. 14(17), pages 1-13, August.
    20. Costoya, X. & Rocha, A. & Carvalho, D., 2020. "Using bias-correction to improve future projections of offshore wind energy resource: A case study on the Iberian Peninsula," Applied Energy, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:159:y:2022:i:c:s1364032122001423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.