IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v197y2022icp138-150.html
   My bibliography  Save this article

Measuring dynamics of solar energy resource quality: Methodology and policy implications for reducing regional energy inequality

Author

Listed:
  • Sun, Yanwei
  • Li, Ying
  • Wang, Run
  • Ma, Renfeng

Abstract

Solar energy utilization has been widely recognized as the most promising solution for achieving the global and regional carbon neutral targets. While existing literature on assessment of the solar energy resource mostly focuses on the current availability of energy quantity, the dynamic quality characteristics of reliable energy supplies are always neglected. This research presents a holistic spatiotemporal assessment methodology to quantify the solar energy resource quality (SERQ) from a quantity and quality coupled perspective. Specifically, we used the time-series daily meteorological reanalysis data, annual land use/cover, and nighttime light data during 1992–2018 to investigate the dynamic properties of SERQ at the 0.125° × 0.125° grid cell level across China. The validation process based on exiting solar power farms was conducted to analyze the applicability of proposed method in site selection. Our findings revealed that the annual solar energy potential in China was estimated at 66 PWh with the high resource quality level (SERQI>0.6). Furthermore, the outcomes of resource quality evaluation are more sensitive to the power load accessibility index. The involvement of energy quality dimension would reduce regional energy inequality in China. Thus, we highlight the necessity of improving the long-distance power transmission and energy storage infrastructures. Mapping the SERQ at the country level could provide investors and decision makers with useful insights to develop appropriate energy planning and incentive policies.

Suggested Citation

  • Sun, Yanwei & Li, Ying & Wang, Run & Ma, Renfeng, 2022. "Measuring dynamics of solar energy resource quality: Methodology and policy implications for reducing regional energy inequality," Renewable Energy, Elsevier, vol. 197(C), pages 138-150.
  • Handle: RePEc:eee:renene:v:197:y:2022:i:c:p:138-150
    DOI: 10.1016/j.renene.2022.07.122
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122011314
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.07.122?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Yuhu & Ren, Jing & Pu, Yanru & Wang, Peng, 2020. "Solar energy potential assessment: A framework to integrate geographic, technological, and economic indices for a potential analysis," Renewable Energy, Elsevier, vol. 149(C), pages 577-586.
    2. Jain, Anjali & Das, Partha & Yamujala, Sumanth & Bhakar, Rohit & Mathur, Jyotirmay, 2020. "Resource potential and variability assessment of solar and wind energy in India," Energy, Elsevier, vol. 211(C).
    3. Atsu, Divine & Seres, Istvan & Farkas, Istvan, 2021. "The state of solar PV and performance analysis of different PV technologies grid-connected installations in Hungary," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    4. Qiu, Tianzhi & Wang, Lunche & Lu, Yunbo & Zhang, Ming & Qin, Wenmin & Wang, Shaoqiang & Wang, Lizhe, 2022. "Potential assessment of photovoltaic power generation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    5. Wang, Yuqing & Liu, Yingxin & Dou, Jinyue & Li, Mingzhu & Zeng, Ming, 2020. "Geothermal energy in China: Status, challenges, and policy recommendations," Utilities Policy, Elsevier, vol. 64(C).
    6. Bistline, John & Blanford, Geoffrey & Mai, Trieu & Merrick, James, 2021. "Modeling variable renewable energy and storage in the power sector," Energy Policy, Elsevier, vol. 156(C).
    7. Castillejo-Cuberos, Armando & Escobar, Rodrigo, 2020. "Understanding solar resource variability: An in-depth analysis, using Chile as a case of study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    8. Polo, J. & Gastón, M. & Vindel, J.M. & Pagola, I., 2015. "Spatial variability and clustering of global solar irradiation in Vietnam from sunshine duration measurements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1326-1334.
    9. Jiang, Mingkun & Qi, Lingfei & Yu, Ziyi & Wu, Dadi & Si, Pengfei & Li, Peiran & Wei, Wendong & Yu, Xinhai & Yan, Jinyue, 2021. "National level assessment of using existing airport infrastructures for photovoltaic deployment," Applied Energy, Elsevier, vol. 298(C).
    10. Zhong, Teng & Zhang, Zhixin & Chen, Min & Zhang, Kai & Zhou, Zixuan & Zhu, Rui & Wang, Yijie & Lü, Guonian & Yan, Jinyue, 2021. "A city-scale estimation of rooftop solar photovoltaic potential based on deep learning," Applied Energy, Elsevier, vol. 298(C).
    11. Perpiña Castillo, Carolina & Batista e Silva, Filipe & Lavalle, Carlo, 2016. "An assessment of the regional potential for solar power generation in EU-28," Energy Policy, Elsevier, vol. 88(C), pages 86-99.
    12. Wang, Zhenni & Wen, Xin & Tan, Qiaofeng & Fang, Guohua & Lei, Xiaohui & Wang, Hao & Yan, Jinyue, 2021. "Potential assessment of large-scale hydro-photovoltaic-wind hybrid systems on a global scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    13. Stern, David I., 1999. "Is energy cost an accurate indicator of natural resource quality?," Ecological Economics, Elsevier, vol. 31(3), pages 381-394, December.
    14. He, Gang & Kammen, Daniel M., 2016. "Where, when and how much solar is available? A provincial-scale solar resource assessment for China," Renewable Energy, Elsevier, vol. 85(C), pages 74-82.
    15. Cleveland, Cutler J. & Kaufmann, Robert K. & Stern, David I., 2000. "Aggregation and the role of energy in the economy," Ecological Economics, Elsevier, vol. 32(2), pages 301-317, February.
    16. Li, Jianglong & Huang, Jiashun, 2020. "The expansion of China's solar energy: Challenges and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    17. Zambrano-Asanza, S. & Quiros-Tortos, J. & Franco, John F., 2021. "Optimal site selection for photovoltaic power plants using a GIS-based multi-criteria decision making and spatial overlay with electric load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    18. Fillol, Erwann & Albarelo, Tommy & Primerose, Antoine & Wald, Lucien & Linguet, Laurent, 2017. "Spatiotemporal indicators of solar energy potential in the Guiana Shield using GOES images," Renewable Energy, Elsevier, vol. 111(C), pages 11-25.
    19. Dupont, Elise & Koppelaar, Rembrandt & Jeanmart, Hervé, 2020. "Global available solar energy under physical and energy return on investment constraints," Applied Energy, Elsevier, vol. 257(C).
    20. Halwachs, M. & Neumaier, L. & Vollert, N. & Maul, L. & Dimitriadis, S. & Voronko, Y. & Eder, G.C. & Omazic, A. & Mühleisen, W. & Hirschl, Ch. & Schwark, M. & Berger, K.A. & Ebner, R., 2019. "Statistical evaluation of PV system performance and failure data among different climate zones," Renewable Energy, Elsevier, vol. 139(C), pages 1040-1060.
    21. Sun, Yan-wei & Hof, Angela & Wang, Run & Liu, Jian & Lin, Yan-jie & Yang, De-wei, 2013. "GIS-based approach for potential analysis of solar PV generation at the regional scale: A case study of Fujian Province," Energy Policy, Elsevier, vol. 58(C), pages 248-259.
    22. Ghenai, Chaouki & Albawab, Mona & Bettayeb, Maamar, 2020. "Sustainability indicators for renewable energy systems using multi-criteria decision-making model and extended SWARA/ARAS hybrid method," Renewable Energy, Elsevier, vol. 146(C), pages 580-597.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Yanwei & Li, Ying & Wang, Run & Ma, Renfeng, 2023. "Assessing the national synergy potential of onshore and offshore renewable energy from the perspective of resources dynamic and complementarity," Energy, Elsevier, vol. 279(C).
    2. Lina Volodzkiene & Dalia Streimikiene, 2023. "Energy Inequality Indicators: A Comprehensive Review for Exploring Ways to Reduce Inequality," Energies, MDPI, vol. 16(16), pages 1-28, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morice R. O. Odhiambo & Adnan Abbas & Xiaochan Wang & Gladys Mutinda, 2020. "Solar Energy Potential in the Yangtze River Delta Region—A GIS-Based Assessment," Energies, MDPI, vol. 14(1), pages 1-22, December.
    2. Sun, Yanwei & Li, Ying & Wang, Run & Ma, Renfeng, 2023. "Assessing the national synergy potential of onshore and offshore renewable energy from the perspective of resources dynamic and complementarity," Energy, Elsevier, vol. 279(C).
    3. Zhixin Zhang & Min Chen & Teng Zhong & Rui Zhu & Zhen Qian & Fan Zhang & Yue Yang & Kai Zhang & Paolo Santi & Kaicun Wang & Yingxia Pu & Lixin Tian & Guonian Lü & Jinyue Yan, 2023. "Carbon mitigation potential afforded by rooftop photovoltaic in China," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Wang, Peng & Zhang, Shuainan & Pu, Yanru & Cao, Shuchao & Zhang, Yuhu, 2021. "Estimation of photovoltaic power generation potential in 2020 and 2030 using land resource changes: An empirical study from China," Energy, Elsevier, vol. 219(C).
    5. Li, Mingquan & Virguez, Edgar & Shan, Rui & Tian, Jialin & Gao, Shuo & Patiño-Echeverri, Dalia, 2022. "High-resolution data shows China’s wind and solar energy resources are enough to support a 2050 decarbonized electricity system," Applied Energy, Elsevier, vol. 306(PA).
    6. Yu, Shiwei & Han, Ruilian & Zhang, Junjie, 2023. "Reassessment of the potential for centralized and distributed photovoltaic power generation in China: On a prefecture-level city scale," Energy, Elsevier, vol. 262(PA).
    7. Younes Noorollahi & Mohammad Mohammadi & Hossein Yousefi & Amjad Anvari-Moghaddam, 2020. "A Spatial-Based Integration Model for Regional Scale Solar Energy Technical Potential," Sustainability, MDPI, vol. 12(5), pages 1-19, March.
    8. Ding, Feng & Yang, Jianping & Zhou, Zan, 2023. "Economic profits and carbon reduction potential of photovoltaic power generation for China's high-speed railway infrastructure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    9. Langer, Jannis & Kwee, Zenlin & Zhou, Yilong & Isabella, Olindo & Ashqar, Ziad & Quist, Jaco & Praktiknjo, Aaron & Blok, Kornelis, 2023. "Geospatial analysis of Indonesia's bankable utility-scale solar PV potential using elements of project finance," Energy, Elsevier, vol. 283(C).
    10. Prăvălie, Remus & Sîrodoev, Igor & Ruiz-Arias, José & Dumitraşcu, Monica, 2022. "Using renewable (solar) energy as a sustainable management pathway of lands highly sensitive to degradation in Romania. A countrywide analysis based on exploring the geographical and technical solar p," Renewable Energy, Elsevier, vol. 193(C), pages 976-990.
    11. Jiang, Hou & Zhang, Xiaotong & Yao, Ling & Lu, Ning & Qin, Jun & Liu, Tang & Zhou, Chenghu, 2023. "High-resolution analysis of rooftop photovoltaic potential based on hourly generation simulations and load profiles," Applied Energy, Elsevier, vol. 348(C).
    12. Matthew K. Heun & João Santos & Paul E. Brockway & Randall Pruim & Tiago Domingos & Marco Sakai, 2017. "From Theory to Econometrics to Energy Policy: Cautionary Tales for Policymaking Using Aggregate Production Functions," Energies, MDPI, vol. 10(2), pages 1-44, February.
    13. Zhang, Yuhu & Ren, Jing & Pu, Yanru & Wang, Peng, 2020. "Solar energy potential assessment: A framework to integrate geographic, technological, and economic indices for a potential analysis," Renewable Energy, Elsevier, vol. 149(C), pages 577-586.
    14. Marco Vittorio Ecclesia & João Santos & Paul E. Brockway & Tiago Domingos, 2022. "A Comprehensive Societal Energy Return on Investment Study of Portugal Reveals a Low but Stable Value," Energies, MDPI, vol. 15(10), pages 1-22, May.
    15. Liu, Jiang & Wu, Qifeng & Lin, Zhipeng & Shi, Huijie & Wen, Shaoyang & Wu, Qiaoyu & Zhang, Junxue & Peng, Changhai, 2023. "A novel approach for assessing rooftop-and-facade solar photovoltaic potential in rural areas using three-dimensional (3D) building models constructed with GIS," Energy, Elsevier, vol. 282(C).
    16. Hosseini Dehshiri, Seyyed Shahabaddin, 2022. "A new application of multi criteria decision making in energy technology in traditional buildings: A case study of Isfahan," Energy, Elsevier, vol. 240(C).
    17. Alfeus Sunarso & Kunhali Ibrahim-Bathis & Sakti A. Murti & Irwan Budiarto & Harold S. Ruiz, 2020. "GIS-Based Assessment of the Technical and Economic Feasibility of Utility-Scale Solar PV Plants: Case Study in West Kalimantan Province," Sustainability, MDPI, vol. 12(15), pages 1-12, August.
    18. Wang, Tiantian & Wang, Yanhua & Wang, Ke & Fu, Sha & Ding, Li, 2024. "Five-dimensional assessment of China's centralized and distributed photovoltaic potential: From solar irradiation to CO2 mitigation," Applied Energy, Elsevier, vol. 356(C).
    19. Hosseini Dehshiri, Seyyed Shahabaddin & Firoozabadi, Bahar, 2022. "A new application of measurement of alternatives and ranking according to compromise solution (MARCOS) in solar site location for electricity and hydrogen production: A case study in the southern clim," Energy, Elsevier, vol. 261(PB).
    20. Imad Hassan & Ibrahim Alhamrouni & Nurul Hanis Azhan, 2023. "A CRITIC–TOPSIS Multi-Criteria Decision-Making Approach for Optimum Site Selection for Solar PV Farm," Energies, MDPI, vol. 16(10), pages 1-26, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:197:y:2022:i:c:p:138-150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.