IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v101y2013icp49-57.html
   My bibliography  Save this article

The estimation of energy efficiency for hybrid refrigeration system

Author

Listed:
  • Gazda, Wiesław
  • Kozioł, Joachim

Abstract

The concept of the air blast-cryogenic freezing method (ABCF) is based on an innovative hybrid refrigeration system with one common cooling space. The hybrid cooling system consists of a vapor compression refrigeration system and a cryogenic refrigeration system. The prototype experimental setup for this method on the laboratory scale is discussed. The application of the results of experimental investigations and the theoretical–empirical model makes it possible to calculate the cooling capacity as well as the final and primary energy use in the hybrid system. The energetic analysis has been carried out for the operating modes of the refrigerating systems for the required temperatures inside the cooling chamber of −5°C, −10°C and −15°C. For the estimation of the energy efficiency the coefficient of performance COP and the primary energy ratio PER for the hybrid refrigeration system are proposed. A comparison of these coefficients for the vapor compression refrigeration and the cryogenic refrigeration system has also been presented.

Suggested Citation

  • Gazda, Wiesław & Kozioł, Joachim, 2013. "The estimation of energy efficiency for hybrid refrigeration system," Applied Energy, Elsevier, vol. 101(C), pages 49-57.
  • Handle: RePEc:eee:appene:v:101:y:2013:i:c:p:49-57
    DOI: 10.1016/j.apenergy.2012.05.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912003546
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.05.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Szargut, Jan & Szczygiel, Ireneusz, 2009. "Utilization of the cryogenic exergy of liquid natural gas (LNG) for the production of electricity," Energy, Elsevier, vol. 34(7), pages 827-837.
    2. Siitonen, Sari & Tuomaala, Mari & Suominen, Markku & Ahtila, Pekka, 2010. "Implications of process energy efficiency improvements for primary energy consumption and CO2 emissions at the national level," Applied Energy, Elsevier, vol. 87(9), pages 2928-2937, September.
    3. Calise, F. & Palombo, A. & Vanoli, L., 2010. "Maximization of primary energy savings of solar heating and cooling systems by transient simulations and computer design of experiments," Applied Energy, Elsevier, vol. 87(2), pages 524-540, February.
    4. Piacentino, Antonio & Cardona, Fabio, 2010. "Scope-Oriented Thermoeconomic analysis of energy systems. Part I: Looking for a non-postulated cost accounting for the dissipative devices of a vapour compression chiller. Is it feasible?," Applied Energy, Elsevier, vol. 87(3), pages 943-956, March.
    5. Xu, Zhenjun & Wu, Huaizhi & Wu, Meiling, 2010. "Energy performance and consumption for biogas heat pump air conditioner," Energy, Elsevier, vol. 35(12), pages 5497-5502.
    6. Fumo, Nelson & Chamra, Louay M., 2010. "Analysis of combined cooling, heating, and power systems based on source primary energy consumption," Applied Energy, Elsevier, vol. 87(6), pages 2023-2030, June.
    7. Sun, Z.G., 2008. "Experimental investigation of integrated refrigeration system (IRS) with gas engine, compression chiller and absorption chiller," Energy, Elsevier, vol. 33(3), pages 431-436.
    8. Waltrich, Maicon & Hermes, Christian J.L. & Melo, Cláudio, 2011. "Simulation-based design and optimization of refrigeration cassettes," Applied Energy, Elsevier, vol. 88(12), pages 4756-4765.
    9. Aprea, Ciro & Maiorino, Angelo & Mastrullo, Rita, 2011. "Change in energy performance as a result of a R422D retrofit: An experimental analysis for a vapor compression refrigeration plant for a walk-in cooler," Applied Energy, Elsevier, vol. 88(12), pages 4742-4748.
    10. Manzela, André Aleixo & Hanriot, Sérgio Morais & Cabezas-Gómez, Luben & Sodré, José Ricardo, 2010. "Using engine exhaust gas as energy source for an absorption refrigeration system," Applied Energy, Elsevier, vol. 87(4), pages 1141-1148, April.
    11. Qureshi, Bilal Ahmed & Zubair, Syed M., 2012. "The impact of fouling on performance of a vapor compression refrigeration system with integrated mechanical sub-cooling system," Applied Energy, Elsevier, vol. 92(C), pages 750-762.
    12. Morosuk, T. & Tsatsaronis, G., 2009. "Advanced exergetic evaluation of refrigeration machines using different working fluids," Energy, Elsevier, vol. 34(12), pages 2248-2258.
    13. Liu, Ming & Saman, Wasim & Bruno, Frank, 2012. "Development of a novel refrigeration system for refrigerated trucks incorporating phase change material," Applied Energy, Elsevier, vol. 92(C), pages 336-342.
    14. Kelly, S. & Tsatsaronis, G. & Morosuk, T., 2009. "Advanced exergetic analysis: Approaches for splitting the exergy destruction into endogenous and exogenous parts," Energy, Elsevier, vol. 34(3), pages 384-391.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeon, Yongseok & Kim, Sunjae & Kim, Dongwoo & Chung, Hyun Joon & Kim, Yongchan, 2017. "Performance characteristics of an R600a household refrigeration cycle with a modified two-phase ejector for various ejector geometries and operating conditions," Applied Energy, Elsevier, vol. 205(C), pages 1059-1067.
    2. Ji, Xu & Li, Ming & Fan, Jieqing & Zhang, Peng & Luo, Bin & Wang, Liuling, 2014. "Structure optimization and performance experiments of a solar-powered finned-tube adsorption refrigeration system," Applied Energy, Elsevier, vol. 113(C), pages 1293-1300.
    3. Jeon, Yongseok & Jung, Jongho & Kim, Dongwoo & Kim, Sunjae & Kim, Yongchan, 2017. "Effects of ejector geometries on performance of ejector-expansion R410A air conditioner considering cooling seasonal performance factor," Applied Energy, Elsevier, vol. 205(C), pages 761-768.
    4. Li, Huashan & Cao, Fei & Bu, Xianbiao & Wang, Lingbao & Wang, Xianlong, 2014. "Performance characteristics of R1234yf ejector-expansion refrigeration cycle," Applied Energy, Elsevier, vol. 121(C), pages 96-103.
    5. Arun Shankar, Vishnu Kalaiselvan & Umashankar, Subramaniam & Paramasivam, Shanmugam & Hanigovszki, Norbert, 2016. "A comprehensive review on energy efficiency enhancement initiatives in centrifugal pumping system," Applied Energy, Elsevier, vol. 181(C), pages 495-513.
    6. Razmi, Amir Reza & Arabkoohsar, Ahmad & Nami, Hossein, 2020. "Thermoeconomic analysis and multi-objective optimization of a novel hybrid absorption/recompression refrigeration system," Energy, Elsevier, vol. 210(C).
    7. Gazda, Wiesław, 2013. "Application possibilities of the strategies of the air blast–cryogenic cooling process," Energy, Elsevier, vol. 62(C), pages 113-119.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ligang Wang & Zhiping Yang & Shivom Sharma & Alberto Mian & Tzu-En Lin & George Tsatsaronis & François Maréchal & Yongping Yang, 2018. "A Review of Evaluation, Optimization and Synthesis of Energy Systems: Methodology and Application to Thermal Power Plants," Energies, MDPI, vol. 12(1), pages 1-53, December.
    2. Morosuk, T. & Tsatsaronis, G., 2011. "Comparative evaluation of LNG – based cogeneration systems using advanced exergetic analysis," Energy, Elsevier, vol. 36(6), pages 3771-3778.
    3. Liu, X.G. & He, C. & He, C.C. & Chen, J.J. & Zhang, B.J. & Chen, Q.L., 2017. "A new retrofit approach to the absorption-stabilization process for improving energy efficiency in refineries," Energy, Elsevier, vol. 118(C), pages 1131-1145.
    4. Fallah, M. & Siyahi, H. & Ghiasi, R. Akbarpour & Mahmoudi, S.M.S. & Yari, M. & Rosen, M.A., 2016. "Comparison of different gas turbine cycles and advanced exergy analysis of the most effective," Energy, Elsevier, vol. 116(P1), pages 701-715.
    5. Stanek, Wojciech & Gazda, Wiesław, 2014. "Exergo-ecological evaluation of adsorption chiller system," Energy, Elsevier, vol. 76(C), pages 42-48.
    6. Janghorban Esfahani, Iman & Kang, Yong Tae & Yoo, ChangKyoo, 2014. "A high efficient combined multi-effect evaporation–absorption heat pump and vapor-compression refrigeration part 1: Energy and economic modeling and analysis," Energy, Elsevier, vol. 75(C), pages 312-326.
    7. Qureshi, Bilal A. & Inam, Muhammad & Antar, Mohamed A. & Zubair, Syed M., 2013. "Experimental energetic analysis of a vapor compression refrigeration system with dedicated mechanical sub-cooling," Applied Energy, Elsevier, vol. 102(C), pages 1035-1041.
    8. Zhao, Hongxia & Yuan, Tianpeng & Gao, Jia & Wang, Xinli & Yan, Jia, 2019. "Conventional and advanced exergy analysis of parallel and series compression-ejection hybrid refrigeration system for a household refrigerator with R290," Energy, Elsevier, vol. 166(C), pages 845-861.
    9. Mosaffa, A.H. & Garousi Farshi, L. & Infante Ferreira, C.A. & Rosen, M.A., 2014. "Advanced exergy analysis of an air conditioning system incorporating thermal energy storage," Energy, Elsevier, vol. 77(C), pages 945-952.
    10. Wang, Zhiwen & Xiong, Wei & Ting, David S.-K. & Carriveau, Rupp & Wang, Zuwen, 2016. "Conventional and advanced exergy analyses of an underwater compressed air energy storage system," Applied Energy, Elsevier, vol. 180(C), pages 810-822.
    11. Morosuk, Tatiana & Tsatsaronis, George, 2019. "Advanced exergy-based methods used to understand and improve energy-conversion systems," Energy, Elsevier, vol. 169(C), pages 238-246.
    12. Wei, Zhiqiang & Zhang, Bingjian & Wu, Shengyuan & Chen, Qinglin & Tsatsaronis, George, 2012. "Energy-use analysis and evaluation of distillation systems through avoidable exergy destruction and investment costs," Energy, Elsevier, vol. 42(1), pages 424-433.
    13. Jankowski, Nicholas R. & McCluskey, F. Patrick, 2014. "A review of phase change materials for vehicle component thermal buffering," Applied Energy, Elsevier, vol. 113(C), pages 1525-1561.
    14. Wang, Yinglong & Chen, Zhengrun & Shen, Yuanyuan & Ma, Zhaoyuan & Li, Huiyuan & Liu, Xiaobin & Zhu, Zhaoyou & Qi, Jianguang & Cui, Peizhe & Wang, Lei & Ma, Yixin & Xu, Dongmei, 2021. "Advanced exergy and exergoeconomic analysis of an integrated system combining CO2 capture-storage and waste heat utilization processes," Energy, Elsevier, vol. 219(C).
    15. Salehzadeh, A. & Khoshbakhti Saray, R. & JalaliVahid, D., 2013. "Investigating the effect of several thermodynamic parameters on exergy destruction in components of a tri-generation cycle," Energy, Elsevier, vol. 52(C), pages 96-109.
    16. Şöhret, Yasin & Açıkkalp, Emin & Hepbasli, Arif & Karakoc, T. Hikmet, 2015. "Advanced exergy analysis of an aircraft gas turbine engine: Splitting exergy destructions into parts," Energy, Elsevier, vol. 90(P2), pages 1219-1228.
    17. Keçebaş, Ali & Gökgedik, Harun, 2015. "Thermodynamic evaluation of a geothermal power plant for advanced exergy analysis," Energy, Elsevier, vol. 88(C), pages 746-755.
    18. Balli, Ozgur, 2017. "Advanced exergy analyses of an aircraft turboprop engine (TPE)," Energy, Elsevier, vol. 124(C), pages 599-612.
    19. Gazda, Wiesław, 2013. "Application possibilities of the strategies of the air blast–cryogenic cooling process," Energy, Elsevier, vol. 62(C), pages 113-119.
    20. Querol, E. & Gonzalez-Regueral, B. & Ramos, A. & Perez-Benedito, J.L., 2011. "Novel application for exergy and thermoeconomic analysis of processes simulated with Aspen Plus®," Energy, Elsevier, vol. 36(2), pages 964-974.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:101:y:2013:i:c:p:49-57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.