IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v271y2023ics0360544223002839.html
   My bibliography  Save this article

Strain behavior of very new high manganese steel for 200,000 m3 LNG cryogenic storage tank

Author

Listed:
  • Kim, Jeong Hwan
  • Lee, Min-Kyung
  • Jang, Wookil
  • Lee, Jae-Hun

Abstract

The objective of this research is to investigate the actual performance of high manganese (22–26%Mn) steel as a material for LNG storage tanks. The results of joint research with POSCO, POSCO E&C, industry-academia-research committees, and Korea Gas Safety Corporation showed that the new steel is equivalent in performance to traditional 9%Ni steel but has a lower cost. The steel was practically applied in a 200,000 ㎥ LNG storage tank and the behavior of the inner wall was monitored during LNG import and export. The results showed that Poisson's ratio was measured in the range between 0.079 and 0.089. This study provides evidence that high manganese steel is a viable alternative to traditional 9%Ni steel for LNG storage tanks, providing cost savings without sacrificing performance.

Suggested Citation

  • Kim, Jeong Hwan & Lee, Min-Kyung & Jang, Wookil & Lee, Jae-Hun, 2023. "Strain behavior of very new high manganese steel for 200,000 m3 LNG cryogenic storage tank," Energy, Elsevier, vol. 271(C).
  • Handle: RePEc:eee:energy:v:271:y:2023:i:c:s0360544223002839
    DOI: 10.1016/j.energy.2023.126889
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223002839
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.126889?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Wensheng & Zhang, Na & Gu, Anzhong, 2010. "LNG (liquefied natural gas): A necessary part in China's future energy infrastructure," Energy, Elsevier, vol. 35(11), pages 4383-4391.
    2. Jeon, Gyu-Mok & Park, Jong-Chun & Kim, Jae-Won & Lee, Young-Bum & Kim, Deok-Su & Kang, Dong-Eok & Lee, Sang-Beom & Lee, Sang-Won & Ryu, Min-Cheol, 2022. "Experimental and numerical investigation of change in boil-off gas and thermodynamic characteristics according to filling ratio in a C-type cryogenic liquid fuel tank," Energy, Elsevier, vol. 255(C).
    3. Kalikatzarakis, Miltiadis & Theotokatos, Gerasimos & Coraddu, Andrea & Sayan, Paul & Wong, Seng Yew, 2022. "Model based analysis of the boil-off gas management and control for LNG fuelled vessels," Energy, Elsevier, vol. 251(C).
    4. Wang, Zhihao & Sharafian, Amir & Mérida, Walter, 2022. "Thermal stratification and rollover phenomena in liquefied natural gas tanks," Energy, Elsevier, vol. 238(PC).
    5. Deng, Pingping & Liang, Jierong & Wu, Yongqiang & Li, Tingxun, 2019. "Dynamic boil-off characterization for discharge process of LNG vehicle tank," Energy, Elsevier, vol. 186(C).
    6. Wang, Zhihao & Sharafian, Amir & Mérida, Walter, 2020. "Non-equilibrium thermodynamic model for liquefied natural gas storage tanks," Energy, Elsevier, vol. 190(C).
    7. Tang, Changlong & Hu, Fan & Zhou, Xiaoguang & Li, Yajun, 2022. "Optimization methods for flexibility and stability related to the operation of LNG receiving terminals," Energy, Elsevier, vol. 250(C).
    8. Jo, Yeonpyeong & Shin, Kyeongseok & Hwang, Sungwon, 2021. "Development of dynamic simulation model of LNG tank and its operational strategy," Energy, Elsevier, vol. 223(C).
    9. Duan, Zhongdi & Xue, Hongxiang & Gong, Xueru & Tang, Wenyong, 2021. "A thermal non-equilibrium model for predicting LNG boil-off in storage tanks incorporating the natural convection effect," Energy, Elsevier, vol. 233(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Mi & Ma, Shuhao & Zhang, Naiqiang, 2023. "Experimental investigation of LPG-releasing processes with varied damage sizes on a pressurized vessel," Energy, Elsevier, vol. 276(C).
    2. Guolong Jin & Xiongyao Xie & Pan Li & Hongqiao Li & Mingrui Zhao & Meitao Zou, 2024. "Fluid-Solid-Thermal Coupled Freezing Modeling Test of Soil under the Low-Temperature Condition of LNG Storage Tank," Energies, MDPI, vol. 17(13), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marques, Pedro A. & Ahizi, Samuel & Mendez, Miguel A., 2024. "Real-time data assimilation for the thermodynamic modeling of cryogenic storage tanks," Energy, Elsevier, vol. 302(C).
    2. Duan, Zhongdi & Zhu, Yifeng & Wang, Chenbiao & Yuan, Yuchao & Xue, Hongxiang & Tang, Wenyong, 2023. "Numerical and theoretical prediction of the thermodynamic response in marine LNG fuel tanks under sloshing conditions," Energy, Elsevier, vol. 270(C).
    3. Zhou, Mi & Ma, Shuhao & Zhang, Naiqiang, 2023. "Experimental investigation of LPG-releasing processes with varied damage sizes on a pressurized vessel," Energy, Elsevier, vol. 276(C).
    4. Kalikatzarakis, Miltiadis & Theotokatos, Gerasimos & Coraddu, Andrea & Sayan, Paul & Wong, Seng Yew, 2022. "Model based analysis of the boil-off gas management and control for LNG fuelled vessels," Energy, Elsevier, vol. 251(C).
    5. Kim, Sungwoo & Lee, Jong-Gyu & Kim, Seongkyu & Heo, Joonyong & Bang, Chang Seon & Lee, Dong-Kil & Lee, Hoki & Park, Gunil & Lee, DongYeon & Lim, Youngsub, 2024. "Experiment and simulation of LNG self-pressurization considering temperature distribution under varying liquid level," Energy, Elsevier, vol. 290(C).
    6. Duan, Zhongdi & Xue, Hongxiang & Gong, Xueru & Tang, Wenyong, 2021. "A thermal non-equilibrium model for predicting LNG boil-off in storage tanks incorporating the natural convection effect," Energy, Elsevier, vol. 233(C).
    7. Zhang, Yi & Ji, Qiang & Fan, Ying, 2018. "The price and income elasticity of China's natural gas demand: A multi-sectoral perspective," Energy Policy, Elsevier, vol. 113(C), pages 332-341.
    8. Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).
    9. Geng, Jiang-Bo & Ji, Qiang, 2014. "Multi-perspective analysis of China's energy supply security," Energy, Elsevier, vol. 64(C), pages 541-550.
    10. Luo, Sai & Xu, JingBo & Wang, Chen & Ji, Jie, 2023. "Experimental study of flame spread behavior and heat transfer mechanism over n-butanol fuel in trays of different widths," Energy, Elsevier, vol. 282(C).
    11. Tong, Weixin & Ji, Jie & Wang, Chen & Li, Chunxiao & Zhu, Jiping, 2023. "Experimental study on the combustion behaviors of continuous methanol spill fires on the vertical plane," Energy, Elsevier, vol. 285(C).
    12. He, Tianbiao & Zhou, Zhongming & Mao, Ning & Qyyum, Muhammad Abdul, 2024. "Transcritical CO2 precooled single mixed refrigerant natural gas liquefaction process: Exergy and Exergoeconomic optimization," Energy, Elsevier, vol. 294(C).
    13. Kagiri, Charles & Wanjiru, Evan M. & Zhang, Lijun & Xia, Xiaohua, 2018. "Optimized response to electricity time-of-use tariff of a compressed natural gas fuelling station," Applied Energy, Elsevier, vol. 222(C), pages 244-256.
    14. Duan, Zhongdi & Ren, Tao & Ding, Guoliang & Chen, Jie & Mi, Xiaoguang, 2017. "Liquid-migration based model for predicting the thermal performance of spiral wound heat exchanger for floating LNG," Applied Energy, Elsevier, vol. 206(C), pages 972-982.
    15. He, Tianbiao & Ju, Yonglin, 2014. "A novel conceptual design of parallel nitrogen expansion liquefaction process for small-scale LNG (liquefied natural gas) plant in skid-mount packages," Energy, Elsevier, vol. 75(C), pages 349-359.
    16. Invernizzi, Costante M. & Iora, Paolo, 2016. "The exploitation of the physical exergy of liquid natural gas by closed power thermodynamic cycles. An overview," Energy, Elsevier, vol. 105(C), pages 2-15.
    17. Vladimír Hönig & Petr Prochazka & Michal Obergruber & Luboš Smutka & Viera Kučerová, 2019. "Economic and Technological Analysis of Commercial LNG Production in the EU," Energies, MDPI, vol. 12(8), pages 1-17, April.
    18. Wu, Xi & Yang, Zhao & Wang, Xiaoming & Lin, Yulong, 2013. "Experimental and theoretical study on the influence of temperature and humidity on the flammability limits of ethylene (R1150)," Energy, Elsevier, vol. 52(C), pages 185-191.
    19. Biswas, Nirmalendu & Mandal, Dipak Kumar & Manna, Nirmal K. & Benim, Ali Cemal, 2023. "Enhanced energy and mass transport dynamics in a thermo-magneto-bioconvective porous system containing oxytactic bacteria and nanoparticles: cleaner energy application," Energy, Elsevier, vol. 263(PB).
    20. He, Tianbiao & Chong, Zheng Rong & Zheng, Junjie & Ju, Yonglin & Linga, Praveen, 2019. "LNG cold energy utilization: Prospects and challenges," Energy, Elsevier, vol. 170(C), pages 557-568.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:271:y:2023:i:c:s0360544223002839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.