IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v301y2024ics0360544224011721.html
   My bibliography  Save this article

SWOAM: Swarm optimized agents for energy management in grid-interactive connected buildings

Author

Listed:
  • Tungom, Chia E.
  • Wang, Hong
  • Beata, Kamuya
  • Niu, Ben

Abstract

With increasing complexity of smart city energy systems and rising energy demand, effective energy management solutions are crucial. Buildings now incorporate renewable energy sources and battery storage for efficient energy utilization, making optimal control strategies important. Compared to rule-based controllers and model-based methods, swarm and evolutionary algorithms have the advantages of providing cost-effective, stable, and scalable alternatives. However, their potential in data-rich environments and multi-building energy systems remains underexplored. This research bridges this gap by demonstrating the cooperative capabilities of population-based optimization agents for efficient energy management. Specifically, novel algorithm and framework, named Swarm Optimized Agents for Sequential Decision Making (SWOAM) is proposed. It combines an online k-means classifier and a swarm optimizer for optimal control of multi-building energy systems. By designing an online K-means learning strategy and an agent-based sequential episodic sampling approach, it is feasible to train a swarm of agents find an optimal energy management policy for buildings in a district. For training and evaluation, we use the standardized CityLearn building energy management environment. The agents are evaluated on three key metrics: electricity cost, carbon dioxide emissions and grid ramping. SWOAM delivers state-of-the-art performance and outperforms modern reinforcement learning and rule-based controllers.

Suggested Citation

  • Tungom, Chia E. & Wang, Hong & Beata, Kamuya & Niu, Ben, 2024. "SWOAM: Swarm optimized agents for energy management in grid-interactive connected buildings," Energy, Elsevier, vol. 301(C).
  • Handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224011721
    DOI: 10.1016/j.energy.2024.131399
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224011721
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131399?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224011721. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.