IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v161y2018icp370-380.html
   My bibliography  Save this article

Optimal collaborative demand-response planner for smart residential buildings

Author

Listed:
  • Gomez-Herrera, Juan A.
  • Anjos, Miguel F.

Abstract

This work presents a collaborative scheme for the end-users in a smart building with multiple housing units. This approach determines a day-ahead operational plan that provides demand-response services by taking into account the amount of energy consumed per household, the use of shared storage and solar panels, and the amount of shifted load. We use a biobjective optimization model to trade off total user satisfaction versus total cost of energy consumption. The optimization works in combination with a price structure based on time and level of use that encourages load shifting and benefits the participants. Computational experiments and an extensive sensitivity analysis validate the performance of the proposed approach and help to clarify its strengths, its limits, and the requirements for ensuring the desired outcome.

Suggested Citation

  • Gomez-Herrera, Juan A. & Anjos, Miguel F., 2018. "Optimal collaborative demand-response planner for smart residential buildings," Energy, Elsevier, vol. 161(C), pages 370-380.
  • Handle: RePEc:eee:energy:v:161:y:2018:i:c:p:370-380
    DOI: 10.1016/j.energy.2018.07.132
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218314294
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.07.132?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Siano, Pierluigi, 2014. "Demand response and smart grids—A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 461-478.
    2. Aghaei, Jamshid & Alizadeh, Mohammad-Iman, 2013. "Multi-objective self-scheduling of CHP (combined heat and power)-based microgrids considering demand response programs and ESSs (energy storage systems)," Energy, Elsevier, vol. 55(C), pages 1044-1054.
    3. Kriett, Phillip Oliver & Salani, Matteo, 2012. "Optimal control of a residential microgrid," Energy, Elsevier, vol. 42(1), pages 321-330.
    4. Gao, Dian-ce & Sun, Yongjun & Lu, Yuehong, 2015. "A robust demand response control of commercial buildings for smart grid under load prediction uncertainty," Energy, Elsevier, vol. 93(P1), pages 275-283.
    5. Detroja, Ketan P., 2016. "Optimal autonomous microgrid operation: A holistic view," Applied Energy, Elsevier, vol. 173(C), pages 320-330.
    6. Dai, Rui & Hu, Mengqi & Yang, Dong & Chen, Yang, 2015. "A collaborative operation decision model for distributed building clusters," Energy, Elsevier, vol. 84(C), pages 759-773.
    7. Korkas, Christos D. & Baldi, Simone & Michailidis, Iakovos & Kosmatopoulos, Elias B., 2016. "Occupancy-based demand response and thermal comfort optimization in microgrids with renewable energy sources and energy storage," Applied Energy, Elsevier, vol. 163(C), pages 93-104.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roldán-Blay, Carlos & Escrivá-Escrivá, Guillermo & Roldán-Porta, Carlos, 2019. "Improving the benefits of demand response participation in facilities with distributed energy resources," Energy, Elsevier, vol. 169(C), pages 710-718.
    2. Xu, Fangyuan & Wu, Wanli & Zhao, Fei & Zhou, Ya & Wang, Yongjian & Wu, Runji & Zhang, Tao & Wen, Yongchen & Fan, Yiliang & Jiang, Shengli, 2019. "A micro-market module design for university demand-side management using self-crossover genetic algorithms," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    3. José Luis Ruiz Duarte & Neng Fan, 2022. "Operation of a Power Grid with Embedded Networked Microgrids and Onsite Renewable Technologies," Energies, MDPI, vol. 15(7), pages 1-24, March.
    4. Anjos, Miguel F. & Brotcorne, Luce & Gomez-Herrera, Juan A., 2021. "Optimal setting of time-and-level-of-use prices for an electricity supplier," Energy, Elsevier, vol. 225(C).
    5. Kuznetsova, Elizaveta & Anjos, Miguel F., 2020. "Challenges in energy policies for the economic integration of prosumers in electric energy systems: A critical survey with a focus on Ontario (Canada)," Energy Policy, Elsevier, vol. 142(C).
    6. Sadiq Ahmad & Ayaz Ahmad & Muhammad Naeem & Waleed Ejaz & Hyung Seok Kim, 2018. "A Compendium of Performance Metrics, Pricing Schemes, Optimization Objectives, and Solution Methodologies of Demand Side Management for the Smart Grid," Energies, MDPI, vol. 11(10), pages 1-33, October.
    7. Canales, Fausto A. & Jurasz, Jakub & Beluco, Alexandre & Kies, Alexander, 2020. "Assessing temporal complementarity between three variable energy sources through correlation and compromise programming," Energy, Elsevier, vol. 192(C).
    8. Subramanian, Vignesh & Das, Tapas K., 2019. "A two-layer model for dynamic pricing of electricity and optimal charging of electric vehicles under price spikes," Energy, Elsevier, vol. 167(C), pages 1266-1277.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    2. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    3. Keon Baek & Woong Ko & Jinho Kim, 2019. "Optimal Scheduling of Distributed Energy Resources in Residential Building under the Demand Response Commitment Contract," Energies, MDPI, vol. 12(14), pages 1-19, July.
    4. Wang, Ge & Zhang, Qi & Li, Hailong & McLellan, Benjamin C. & Chen, Siyuan & Li, Yan & Tian, Yulu, 2017. "Study on the promotion impact of demand response on distributed PV penetration by using non-cooperative game theoretical analysis," Applied Energy, Elsevier, vol. 185(P2), pages 1869-1878.
    5. Ferrari, Lorenzo & Esposito, Fabio & Becciani, Michele & Ferrara, Giovanni & Magnani, Sandro & Andreini, Mirko & Bellissima, Alessandro & Cantù, Matteo & Petretto, Giacomo & Pentolini, Massimo, 2017. "Development of an optimization algorithm for the energy management of an industrial Smart User," Applied Energy, Elsevier, vol. 208(C), pages 1468-1486.
    6. Kneiske, T.M. & Braun, M. & Hidalgo-Rodriguez, D.I., 2018. "A new combined control algorithm for PV-CHP hybrid systems," Applied Energy, Elsevier, vol. 210(C), pages 964-973.
    7. Bracco, Stefano & Delfino, Federico & Pampararo, Fabio & Robba, Michela & Rossi, Mansueto, 2014. "A mathematical model for the optimal operation of the University of Genoa Smart Polygeneration Microgrid: Evaluation of technical, economic and environmental performance indicators," Energy, Elsevier, vol. 64(C), pages 912-922.
    8. Lu, Renzhi & Hong, Seung Ho & Zhang, Xiongfeng, 2018. "A Dynamic pricing demand response algorithm for smart grid: Reinforcement learning approach," Applied Energy, Elsevier, vol. 220(C), pages 220-230.
    9. Zhang, Yan & Meng, Fanlin & Wang, Rui & Kazemtabrizi, Behzad & Shi, Jianmai, 2019. "Uncertainty-resistant stochastic MPC approach for optimal operation of CHP microgrid," Energy, Elsevier, vol. 179(C), pages 1265-1278.
    10. Lešić, Vinko & Martinčević, Anita & Vašak, Mario, 2017. "Modular energy cost optimization for buildings with integrated microgrid," Applied Energy, Elsevier, vol. 197(C), pages 14-28.
    11. Howell, Shaun & Rezgui, Yacine & Hippolyte, Jean-Laurent & Jayan, Bejay & Li, Haijiang, 2017. "Towards the next generation of smart grids: Semantic and holonic multi-agent management of distributed energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 193-214.
    12. Kia, Mohsen & Setayesh Nazar, Mehrdad & Sepasian, Mohammad Sadegh & Heidari, Alireza & Siano, Pierluigi, 2017. "An efficient linear model for optimal day ahead scheduling of CHP units in active distribution networks considering load commitment programs," Energy, Elsevier, vol. 139(C), pages 798-817.
    13. Wang, Wei & Chen, Jiayu & Huang, Gongsheng & Lu, Yujie, 2017. "Energy efficient HVAC control for an IPS-enabled large space in commercial buildings through dynamic spatial occupancy distribution," Applied Energy, Elsevier, vol. 207(C), pages 305-323.
    14. Kia, Mohsen & Nazar, Mehrdad Setayesh & Sepasian, Mohammad Sadegh & Heidari, Alireza & Siano, Pierluigi, 2017. "Optimal day ahead scheduling of combined heat and power units with electrical and thermal storage considering security constraint of power system," Energy, Elsevier, vol. 120(C), pages 241-252.
    15. da Fonseca, André L.A. & Chvatal, Karin M.S. & Fernandes, Ricardo A.S., 2021. "Thermal comfort maintenance in demand response programs: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    16. Wang, Wei & Hong, Tianzhen & Li, Nan & Wang, Ryan Qi & Chen, Jiayu, 2019. "Linking energy-cyber-physical systems with occupancy prediction and interpretation through WiFi probe-based ensemble classification," Applied Energy, Elsevier, vol. 236(C), pages 55-69.
    17. Hurtado, L.A. & Rhodes, J.D. & Nguyen, P.H. & Kamphuis, I.G. & Webber, M.E., 2017. "Quantifying demand flexibility based on structural thermal storage and comfort management of non-residential buildings: A comparison between hot and cold climate zones," Applied Energy, Elsevier, vol. 195(C), pages 1047-1054.
    18. Mohseni, Amin & Mortazavi, Seyed Saeidollah & Ghasemi, Ahmad & Nahavandi, Ali & Talaei abdi, Masoud, 2017. "The application of household appliances' flexibility by set of sequential uninterruptible energy phases model in the day-ahead planning of a residential microgrid," Energy, Elsevier, vol. 139(C), pages 315-328.
    19. Wu, Xiaomin & Cao, Weihua & Wang, Dianhong & Ding, Min & Yu, Liangjun & Nakanishi, Yosuke, 2021. "Demand response model based on improved Pareto optimum considering seasonal electricity prices for Dongfushan Island," Renewable Energy, Elsevier, vol. 164(C), pages 926-936.
    20. Zhang, Jingrui & Wu, Yihong & Guo, Yiran & Wang, Bo & Wang, Hengyue & Liu, Houde, 2016. "A hybrid harmony search algorithm with differential evolution for day-ahead scheduling problem of a microgrid with consideration of power flow constraints," Applied Energy, Elsevier, vol. 183(C), pages 791-804.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:161:y:2018:i:c:p:370-380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.