IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i16p8703-d608197.html
   My bibliography  Save this article

Application of the Multiverse Optimization Method to Solve the Optimal Power Flow Problem in Direct Current Electrical Networks

Author

Listed:
  • Andrés Alfonso Rosales-Muñoz

    (Grupo MATyER, Facultad de Ingeniería, Instituto Tecnológico Metropolitano, Campus Robledo, Medellín 050036, Colombia
    These authors contributed equally to this work.)

  • Luis Fernando Grisales-Noreña

    (Grupo MATyER, Facultad de Ingeniería, Instituto Tecnológico Metropolitano, Campus Robledo, Medellín 050036, Colombia
    These authors contributed equally to this work.)

  • Jhon Montano

    (Grupo MATyER, Facultad de Ingeniería, Instituto Tecnológico Metropolitano, Campus Robledo, Medellín 050036, Colombia
    These authors contributed equally to this work.)

  • Oscar Danilo Montoya

    (Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá 110231, Colombia
    Laboratorio Inteligente de Energía, Universidad Tecnológica de Bolívar, Cartagena 131001, Colombia
    These authors contributed equally to this work.)

  • Alberto-Jesus Perea-Moreno

    (Departamento de Física Aplicada, Radiología y Medicina Física, Campus Universitario de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
    These authors contributed equally to this work.)

Abstract

This paper addresses the optimal power flow problem in direct current (DC) networks employing a master–slave solution methodology that combines an optimization algorithm based on the multiverse theory (master stage) and the numerical method of successive approximation (slave stage). The master stage proposes power levels to be injected by each distributed generator in the DC network, and the slave stage evaluates the impact of each power configuration (proposed by the master stage) on the objective function and the set of constraints that compose the problem. In this study, the objective function is the reduction of electrical power losses associated with energy transmission. In addition, the constraints are the global power balance, nodal voltage limits, current limits, and a maximum level of penetration of distributed generators. In order to validate the robustness and repeatability of the solution, this study used four other optimization methods that have been reported in the specialized literature to solve the problem addressed here: ant lion optimization, particle swarm optimization, continuous genetic algorithm, and black hole optimization algorithm. All of them employed the method based on successive approximation to solve the load flow problem (slave stage). The 21- and 69-node test systems were used for this purpose, enabling the distributed generators to inject 20 % , 40 % , and 60 % of the power provided by the slack node in a scenario without distributed generation. The results revealed that the multiverse optimizer offers the best solution quality and repeatability in networks of different sizes with several penetration levels of distributed power generation.

Suggested Citation

  • Andrés Alfonso Rosales-Muñoz & Luis Fernando Grisales-Noreña & Jhon Montano & Oscar Danilo Montoya & Alberto-Jesus Perea-Moreno, 2021. "Application of the Multiverse Optimization Method to Solve the Optimal Power Flow Problem in Direct Current Electrical Networks," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:8703-:d:608197
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/16/8703/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/16/8703/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lipowski, Adam & Lipowska, Dorota, 2012. "Roulette-wheel selection via stochastic acceptance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(6), pages 2193-2196.
    2. Luis Fernando Grisales-Noreña & Daniel Gonzalez Montoya & Carlos Andres Ramos-Paja, 2018. "Optimal Sizing and Location of Distributed Generators Based on PBIL and PSO Techniques," Energies, MDPI, vol. 11(4), pages 1-27, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Riaz & Aamir Hanif & Haris Masood & Muhammad Attique Khan & Kamran Afaq & Byeong-Gwon Kang & Yunyoung Nam, 2021. "An Optimal Power Flow Solution of a System Integrated with Renewable Sources Using a Hybrid Optimizer," Sustainability, MDPI, vol. 13(23), pages 1-12, December.
    2. Luis Fernando Grisales-Noreña & Andrés Alfonso Rosales-Muñoz & Oscar Danilo Montoya, 2023. "An Effective Power Dispatch of Photovoltaic Generators in DC Networks via the Antlion Optimizer," Energies, MDPI, vol. 16(3), pages 1-28, January.
    3. Andrés Alfonso Rosales-Muñoz & Jhon Montano & Luis Fernando Grisales-Noreña & Oscar Danilo Montoya & Fabio Andrade, 2022. "Optimal Power Dispatch of DGs in Radial and Mesh AC Grids: A Hybrid Solution Methodology between the Salps Swarm Algorithm and Successive Approximation Power Flow Method," Sustainability, MDPI, vol. 14(20), pages 1-32, October.
    4. Daniel Sanin-Villa & Oscar Danilo Montoya & Luis Fernando Grisales-Noreña, 2023. "Material Property Characterization and Parameter Estimation of Thermoelectric Generator by Using a Master–Slave Strategy Based on Metaheuristics Techniques," Mathematics, MDPI, vol. 11(6), pages 1-19, March.
    5. Luis Fernando Grisales-Noreña & Andrés Alfonso Rosales-Muñoz & Brandon Cortés-Caicedo & Oscar Danilo Montoya & Fabio Andrade, 2022. "Optimal Operation of PV Sources in DC Grids for Improving Technical, Economical, and Environmental Conditions by Using Vortex Search Algorithm and a Matrix Hourly Power Flow," Mathematics, MDPI, vol. 11(1), pages 1-28, December.
    6. Luis Fernando Grisales-Noreña & Jauder Alexander Ocampo-Toro & Andrés Alfonso Rosales-Muñoz & Brandon Cortes-Caicedo & Oscar Danilo Montoya, 2022. "An Energy Management System for PV Sources in Standalone and Connected DC Networks Considering Economic, Technical, and Environmental Indices," Sustainability, MDPI, vol. 14(24), pages 1-25, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oscar Danilo Montoya & Walter Gil-González & Jesus C. Hernández, 2023. "Optimal Power Flow Solution for Bipolar DC Networks Using a Recursive Quadratic Approximation," Energies, MDPI, vol. 16(2), pages 1-17, January.
    2. Xianbo Xiang & Caoyang Yu & He Xu & Stuart X. Zhu, 2018. "Optimization of Heterogeneous Container Loading Problem with Adaptive Genetic Algorithm," Complexity, Hindawi, vol. 2018, pages 1-12, November.
    3. Hu, Yusha & Li, Jigeng & Hong, Mengna & Ren, Jingzheng & Lin, Ruojue & Liu, Yue & Liu, Mengru & Man, Yi, 2019. "Short term electric load forecasting model and its verification for process industrial enterprises based on hybrid GA-PSO-BPNN algorithm—A case study of papermaking process," Energy, Elsevier, vol. 170(C), pages 1215-1227.
    4. Mehmet Burak Şenol & Ekrem Alper Murat, 2023. "A sequential solution heuristic for continuous facility layout problems," Annals of Operations Research, Springer, vol. 320(1), pages 355-377, January.
    5. Reza Ghanbari & Khatere Ghorbani-Moghadam & Nezam Mahdavi-Amiri, 2021. "A time variant multi-objective particle swarm optimization algorithm for solving fuzzy number linear programming problems using modified Kerre’s method," OPSEARCH, Springer;Operational Research Society of India, vol. 58(2), pages 403-424, June.
    6. Oscar Danilo Montoya & Farhad Zishan & Diego Armando Giral-Ramírez, 2022. "Recursive Convex Model for Optimal Power Flow Solution in Monopolar DC Networks," Mathematics, MDPI, vol. 10(19), pages 1-14, October.
    7. Ahmed A. Ewees & Mohammed A. A. Al-qaness & Laith Abualigah & Diego Oliva & Zakariya Yahya Algamal & Ahmed M. Anter & Rehab Ali Ibrahim & Rania M. Ghoniem & Mohamed Abd Elaziz, 2021. "Boosting Arithmetic Optimization Algorithm with Genetic Algorithm Operators for Feature Selection: Case Study on Cox Proportional Hazards Model," Mathematics, MDPI, vol. 9(18), pages 1-22, September.
    8. Liu, Wenqian & Ke, Ginger Y. & Chen, Jian & Zhang, Lianmin, 2020. "Scheduling the distribution of blood products: A vendor-managed inventory routing approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    9. Reza Moasheri & Mohammadreza Jalili-Ghazizadeh, 2020. "Locating of Probabilistic Leakage Areas in Water Distribution Networks by a Calibration Method Using the Imperialist Competitive Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 35-49, January.
    10. Shanmugarajah Vinothine & Lidula N. Widanagama Arachchige & Athula D. Rajapakse & Roshani Kaluthanthrige, 2022. "Microgrid Energy Management and Methods for Managing Forecast Uncertainties," Energies, MDPI, vol. 15(22), pages 1-22, November.
    11. Ghaeth Fandi & Ibrahim Ahmad & Famous O. Igbinovia & Zdenek Muller & Josef Tlusty & Vladimir Krepl, 2018. "Voltage Regulation and Power Loss Minimization in Radial Distribution Systems via Reactive Power Injection and Distributed Generation Unit Placement," Energies, MDPI, vol. 11(6), pages 1-17, May.
    12. Ziqi Wang & Peihan Wen, 2020. "Optimization of a Low-Carbon Two-Echelon Heterogeneous-Fleet Vehicle Routing for Cold Chain Logistics under Mixed Time Window," Sustainability, MDPI, vol. 12(5), pages 1-22, March.
    13. Mateusz Andrychowicz, 2021. "RES and ES Integration in Combination with Distribution Grid Development Using MILP," Energies, MDPI, vol. 14(2), pages 1-19, January.
    14. Shugang Li & Yanfang Wei & Xin Liu & He Zhu & Zhaoxu Yu, 2022. "A New Fast Ant Colony Optimization Algorithm: The Saltatory Evolution Ant Colony Optimization Algorithm," Mathematics, MDPI, vol. 10(6), pages 1-22, March.
    15. Zaidi, I. & Oulamara, A. & Idoumghar, L. & Basset, M., 2024. "Minimizing grid capacity in preemptive electric vehicle charging orchestration: Complexity, exact and heuristic approaches," European Journal of Operational Research, Elsevier, vol. 312(1), pages 22-37.
    16. Mateusz Andrychowicz, 2020. "Comparison of the Use of Energy Storages and Energy Curtailment as an Addition to the Allocation of Renewable Energy in the Distribution System in Order to Minimize Development Costs," Energies, MDPI, vol. 13(14), pages 1-20, July.
    17. Mahesh Kumar & Amir Mahmood Soomro & Waqar Uddin & Laveet Kumar, 2022. "Optimal Multi-Objective Placement and Sizing of Distributed Generation in Distribution System: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-48, October.
    18. Baowei Wang & Peng Zhao, 2020. "An Adaptive Image Watermarking Method Combining SVD and Wang-Landau Sampling in DWT Domain," Mathematics, MDPI, vol. 8(5), pages 1-20, May.
    19. William Ampomah & Robert S. Balch & Reid B. Grigg & Brian McPherson & Robert A. Will & Si‐Yong Lee & Zhenxue Dai & Feng Pan, 2017. "Co‐optimization of CO 2 ‐EOR and storage processes in mature oil reservoirs," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(1), pages 128-142, February.
    20. Shugang Li & Hui Chen & Xin Liu & Jiayi Li & Kexin Peng & Ziming Wang, 2023. "Online Personalized Learning Path Recommendation Based on Saltatory Evolution Ant Colony Optimization Algorithm," Mathematics, MDPI, vol. 11(13), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:8703-:d:608197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.