IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v300y2024ics0360544224013884.html
   My bibliography  Save this article

Design and experimental study of a 300 We class combustion-driven high frequency free-piston Stirling electric generator

Author

Listed:
  • Xiao, Wang
  • Chen, Lei
  • Yu, Guoyao
  • Ma, Zhuang
  • Ma, Ying
  • Xue, Jianhua
  • Cheng, Yangbin
  • Luo, Ercang

Abstract

Portable electric power generator with a power level of several hundred Watts plays an important role in outdoor activities, emergency relief and tactical power supply. As an external-combustion heat engine with outstanding heat source adaptability, free-piston Stirling generator (FPSG) owns attractive advantages of quietness, high thermal efficiency, and high reliability. This paper proposes a novel ultra-high frequency (UHF) FPSG-based portable power supply system driven by a diesel porous media evaporative combustor (PMEC). An experimental setup was designed and built based on the quasi-one-dimension thermoacoustic impedance matching of the FPSG and three-dimension thermal coupling of steady combustion and alternating flow between FPSG and combustor. The fundamental operating characteristics of the system were investigated in terms of combustion powers and electric loads. Preliminary experimental results show that a maximum output electric power of 350 We at a heating temperature of 875 K and a maximum fuel-to-electric efficiency of 11.98 % were obtained. Computational fluid dynamics (CFD) simulations were employed to delve into the intricate combustion and heat transfer processes, unveiling the formation of carbon deposits and confirming the efficacy of cyclone holes in reducing carbon deposition. This pioneering exploration of 130 Hz UHF and evaporative-combustion coupled heat transfer successfully showcases the feasibility of constructing a high-specific-power FPSG-based portable power system.

Suggested Citation

  • Xiao, Wang & Chen, Lei & Yu, Guoyao & Ma, Zhuang & Ma, Ying & Xue, Jianhua & Cheng, Yangbin & Luo, Ercang, 2024. "Design and experimental study of a 300 We class combustion-driven high frequency free-piston Stirling electric generator," Energy, Elsevier, vol. 300(C).
  • Handle: RePEc:eee:energy:v:300:y:2024:i:c:s0360544224013884
    DOI: 10.1016/j.energy.2024.131615
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224013884
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131615?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Haojie & Yu, Guoyao & Zhao, Dan & Dai, Wei & Luo, Ercang, 2023. "Thermoacoustic hysteresis of a free-piston Stirling electric generator," Energy, Elsevier, vol. 280(C).
    2. Alagumalai, Avinash, 2014. "Internal combustion engines: Progress and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 561-571.
    3. Jiang, Zhijie & Xu, Jingyuan & Yu, Guoyao & Yang, Rui & Wu, Zhanghua & Hu, Jianying & Zhang, Limin & Luo, Ercang, 2023. "A Stirling generator with multiple bypass expansion for variable-temperature waste heat recovery," Applied Energy, Elsevier, vol. 329(C).
    4. Zhu, Shunmin & Yu, Guoyao & Liang, Kun & Dai, Wei & Luo, Ercang, 2021. "A review of Stirling-engine-based combined heat and power technology," Applied Energy, Elsevier, vol. 294(C).
    5. Schneider, T. & Müller, D. & Karl, J., 2020. "A review of thermochemical biomass conversion combined with Stirling engines for the small-scale cogeneration of heat and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Han, Gwangwoo & Kwon, YongKeun & Kim, Joong Bae & Lee, Sanghun & Bae, Joongmyeon & Cho, EunAe & Lee, Bong Jae & Cho, Sungbaek & Park, Jinwoo, 2020. "Development of a high-energy-density portable/mobile hydrogen energy storage system incorporating an electrolyzer, a metal hydride and a fuel cell," Applied Energy, Elsevier, vol. 259(C).
    7. Qiu, Songgang & Gao, Yuan & Rinker, Garrett & Yanaga, Koji, 2019. "Development of an advanced free-piston Stirling engine for micro combined heating and power application," Applied Energy, Elsevier, vol. 235(C), pages 987-1000.
    8. Luo, Jing & Zhang, Limin & Chen, Yanyan & Sun, Yanlei & Yu, Guoyao & Hu, Jianying & Luo, Ercang, 2023. "Numerical study on a free-piston Stirling electric generator with a gas-spring-postpositioned displacer for high-power applications," Energy, Elsevier, vol. 271(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Hang-Suin & Zhu, Hao-Qiang & Xiao, Xian-Zhong, 2023. "Comparison of the dynamic characteristics and performance of beta-type Stirling engines operating with different driving mechanisms," Energy, Elsevier, vol. 275(C).
    2. Zhu, Shunmin & Yu, Guoyao & Liang, Kun & Dai, Wei & Luo, Ercang, 2021. "A review of Stirling-engine-based combined heat and power technology," Applied Energy, Elsevier, vol. 294(C).
    3. Ștefan-Dominic Voronca & Monica Siroux & George Darie, 2022. "Experimental Characterization of Transitory Functioning Regimes of a Biomass Stirling Micro-CHP," Energies, MDPI, vol. 15(15), pages 1-23, July.
    4. David García & María-José Suárez & Eduardo Blanco & Jesús-Ignacio Prieto, 2022. "Experimental and Numerical Characterisation of a Non-Tubular Stirling Engine Heater for Biomass Applications," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    5. İncili, Veysel & Karaca Dolgun, Gülşah & Keçebaş, Ali & Ural, Tolga, 2023. "Energy and exergy analyses of a coal-fired micro-CHP system coupled engine as a domestic solution," Energy, Elsevier, vol. 274(C).
    6. Xiao, Lei & Luo, Kaiqi & Hu, Jianying & Jia, Zilong & Chen, Geng & Xu, Jingyuan & Luo, Ercang, 2023. "Transient and steady performance analysis of a free-piston Stirling generator," Energy, Elsevier, vol. 273(C).
    7. Mou, Xiaofeng & Zhou, Wei & Bao, Zewei & Huang, Weixing, 2024. "Effective thermal conductivity of LaNi5 powder beds for hydrogen storage: Measurement and theoretical analysis," Renewable Energy, Elsevier, vol. 231(C).
    8. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    9. Anita Konieczna & Kamila Mazur & Adam Koniuszy & Andrzej Gawlik & Igor Sikorski, 2022. "Thermal Energy and Exhaust Emissions of a Gasifier Stove Feeding Pine and Hemp Pellets," Energies, MDPI, vol. 15(24), pages 1-17, December.
    10. Li, Jian & Zuo, Zhengxing & Jia, Boru & Feng, Huihua & Mei, Bingang & Smallbone, Andrew & Roskilly, Anthony Paul, 2024. "Operating characteristics and design parameter optimization of permanent magnet linear generator applied to free-piston energy converter," Energy, Elsevier, vol. 287(C).
    11. Osorio, Julian D. & Rivera-Alvarez, Alejandro, 2018. "Efficiency enhancement of spark-ignition engines using a Continuous Variable Valve Timing system for load control," Energy, Elsevier, vol. 161(C), pages 649-662.
    12. Yu, Minjie & Xu, Lei & Cui, Haichuan & Liu, Zhichun & Liu, Wei, 2024. "Characteristics and potential of a novel inclined-flow stirling regenerator constructed by sinusoidal corrugated channels," Energy, Elsevier, vol. 288(C).
    13. Lee, Sanghun & Kim, Taehong & Han, Gwangwoo & Kang, Sungmin & Yoo, Young-Sung & Jeon, Sang-Yun & Bae, Joongmyeon, 2021. "Comparative energetic studies on liquid organic hydrogen carrier: A net energy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    14. Qing Li Zhu & Weixuan Liu & Olena Khoruzhenko & Josef Breu & Wei Hong & Qiang Zheng & Zi Liang Wu, 2024. "Animating hydrogel knotbots with topology-invoked self-regulation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    15. Merola, Simona Silvia & Tornatore, Cinzia & Irimescu, Adrian & Marchitto, Luca & Valentino, Gerardo, 2016. "Optical diagnostics of early flame development in a DISI (direct injection spark ignition) engine fueled with n-butanol and gasoline," Energy, Elsevier, vol. 108(C), pages 50-62.
    16. Xinchen Zhou & Xiang Xu & Jiping Huang, 2023. "Adaptive multi-temperature control for transport and storage containers enabled by phase-change materials," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    17. Wang, Chenyao & Zhang, Fujun & Wang, Enhua & Yu, Chuncun & Gao, Hongli & Liu, Bolan & Zhao, Zhenfeng & Zhao, Changlu, 2019. "Experimental study on knock suppression of spark-ignition engine fuelled with kerosene via water injection," Applied Energy, Elsevier, vol. 242(C), pages 248-259.
    18. Simona Silvia Merola & Adrian Irimescu & Silvana Di Iorio & Bianca Maria Vaglieco, 2017. "Effect of Fuel Injection Strategy on the Carbonaceous Structure Formation and Nanoparticle Emission in a DISI Engine Fuelled with Butanol," Energies, MDPI, vol. 10(7), pages 1-19, June.
    19. Bataineh, Khaled, 2024. "Hybrid fuel-assisted solar-powered stirling engine for combined cooling, heating, and power systems: A review," Energy, Elsevier, vol. 300(C).
    20. Luo, Baojun & Xiang, Quanwei & Su, Xiaoxue & Zhang, Shunfeng & Yan, Piaopiao & Liu, Jingping & Li, Ruijie, 2024. "A novel cycle engine for low-grade heat utilization: Principle, conceptual design and thermodynamic analysis," Energy, Elsevier, vol. 301(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:300:y:2024:i:c:s0360544224013884. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.