IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i9p2319-d354792.html
   My bibliography  Save this article

Solid State Transformers: Concepts, Classification, and Control

Author

Listed:
  • Mohammed Azharuddin Shamshuddin

    (Institute of Electric Drive Systems and Power Electronics, Technische Universität München, 80333 Munich, Germany)

  • Felix Rojas

    (Department of Electrical Engineering, Universidad de Santiago de Chile, 8320000 Santiago, Chile)

  • Roberto Cardenas

    (Department of Electrical Engineering, Universidad de Chile, 8320000 Santiago, Chile)

  • Javier Pereda

    (Department of Electrical Engineering, Pontificia Universidad Católica de Chile, 7500000 Santiago, Chile)

  • Matias Diaz

    (Department of Electrical Engineering, Universidad de Santiago de Chile, 8320000 Santiago, Chile)

  • Ralph Kennel

    (Institute of Electric Drive Systems and Power Electronics, Technische Universität München, 80333 Munich, Germany)

Abstract

Increase in global energy demand and constraints from fossil fuels have encouraged a growing share of renewable energy resources in the utility grid. Accordingly, an increased penetration of direct current (DC) power sources and loads (e.g., solar photovoltaics and electric vehicles) as well as the necessity for active power flow control has been witnessed in the power distribution networks. Passive transformers are susceptible to DC offset and possess no controllability when employed in smart grids. Solid state transformers (SSTs) are identified as a potential solution to modernize and harmonize alternating current (AC) and DC electrical networks and as suitable solutions in applications such as traction, electric ships, and aerospace industry. This paper provides a complete overview on SST: concepts, topologies, classification, power converters, material selection, and key aspects for design criteria and control schemes proposed in the literature. It also proposes a simple terminology to identify and homogenize the large number of definitions and structures currently reported in the literature.

Suggested Citation

  • Mohammed Azharuddin Shamshuddin & Felix Rojas & Roberto Cardenas & Javier Pereda & Matias Diaz & Ralph Kennel, 2020. "Solid State Transformers: Concepts, Classification, and Control," Energies, MDPI, vol. 13(9), pages 1-35, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2319-:d:354792
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/9/2319/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/9/2319/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Miveh, Mohammad Reza & Rahmat, Mohd Fadli & Ghadimi, Ali Asghar & Mustafa, Mohd Wazir, 2016. "Control techniques for three-phase four-leg voltage source inverters in autonomous microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1592-1610.
    2. Cao, Wanyu & Wu, Jianzhong & Jenkins, Nick & Wang, Chengshan & Green, Timothy, 2016. "Operating principle of Soft Open Points for electrical distribution network operation," Applied Energy, Elsevier, vol. 164(C), pages 245-257.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salvatore Musumeci, 2023. "Energy Conversion Using Electronic Power Converters: Technologies and Applications," Energies, MDPI, vol. 16(8), pages 1-9, April.
    2. Weichong Yao & Junwei Lu & Foad Taghizadeh & Feifei Bai & Andrew Seagar, 2023. "Integration of SiC Devices and High-Frequency Transformer for High-Power Renewable Energy Applications," Energies, MDPI, vol. 16(3), pages 1-27, February.
    3. Tiago Oliveira & André Mendes & Luís Caseiro, 2022. "Model Predictive Control for Solid State Transformers: Advances and Trends," Energies, MDPI, vol. 15(22), pages 1-27, November.
    4. Seyedamin Valedsaravi & Abdelali El Aroudi & Luis Martínez-Salamero, 2022. "Review of Solid-State Transformer Applications on Electric Vehicle DC Ultra-Fast Charging Station," Energies, MDPI, vol. 15(15), pages 1-35, August.
    5. Rogkas, N. & Karampasakis, E. & Fotopoulou, M. & Rakopoulos, D., 2024. "Assessment of heat transfer mechanisms of a novel high-frequency inductive power transfer system and coupled simulation using FEA," Energy, Elsevier, vol. 300(C).
    6. Amer Bineshaq & Md Ismail Hossain & Hamed Binqadhi & Aboubakr Salem & Mohammad A. Abido, 2023. "Design and Control of Two-Stage DC-AC Solid-State Transformer for Remote Area and Microgrid Applications," Sustainability, MDPI, vol. 15(9), pages 1-26, April.
    7. Yangfan Chen & Yu Zhang, 2023. "DC Transformers in DC Distribution Systems," Energies, MDPI, vol. 16(7), pages 1-19, March.
    8. Yunxiang Guo & Cheng Lu & Liang Hua & Xinsong Zhang, 2020. "Optimal Design of High-Power Medium-Frequency Transformer Using Hollow Conductors with Consideration of Multi-Objective Parameters," Energies, MDPI, vol. 13(14), pages 1-19, July.
    9. Mohammed Radi & Mohamed Darwish & Gareth Taylor & Ioana Pisica, 2021. "Control Configurations for Reactive Power Compensation at the Secondary Side of the Low Voltage Substation by Using Hybrid Transformer," Energies, MDPI, vol. 14(3), pages 1-23, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chengshan & Song, Guanyu & Li, Peng & Ji, Haoran & Zhao, Jinli & Wu, Jianzhong, 2017. "Optimal siting and sizing of soft open points in active electrical distribution networks," Applied Energy, Elsevier, vol. 189(C), pages 301-309.
    2. Ji, Haoran & Wang, Chengshan & Li, Peng & Song, Guanyu & Yu, Hao & Wu, Jianzhong, 2019. "Quantified analysis method for operational flexibility of active distribution networks with high penetration of distributed generators," Applied Energy, Elsevier, vol. 239(C), pages 706-714.
    3. Sobia Ashraf & Osman Hasan & Ibrahim Evkay & Ugur S. Selamogullari & Mustafa Baysal, 2024. "Recent trends and developments in protection systems for microgrids incorporating distributed generation," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(4), July.
    4. Wang, Ke & Xue, Yixun & Zhou, Yue & Li, Zening & Chang, Xinyue & Sun, Hongbin, 2024. "Distributed coordinated reconfiguration with soft open points for resilience-oriented restoration in integrated electric and heating systems," Applied Energy, Elsevier, vol. 365(C).
    5. Gonzalez Venegas, Felipe & Petit, Marc & Perez, Yannick, 2021. "Active integration of electric vehicles into distribution grids: Barriers and frameworks for flexibility services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    6. Wajahat Ullah Khan Tareen & Muhammad Aamir & Saad Mekhilef & Mutsuo Nakaoka & Mehdi Seyedmahmoudian & Ben Horan & Mudasir Ahmed Memon & Nauman Anwar Baig, 2018. "Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review," Energies, MDPI, vol. 11(6), pages 1-41, June.
    7. Ji, Haoran & Wang, Chengshan & Li, Peng & Zhao, Jinli & Song, Guanyu & Wu, Jianzhong, 2018. "Quantified flexibility evaluation of soft open points to improve distributed generator penetration in active distribution networks based on difference-of-convex programming," Applied Energy, Elsevier, vol. 218(C), pages 338-348.
    8. Su, Hongzhi & Wang, Chengshan & Li, Peng & Liu, Zhelin & Yu, Li & Wu, Jianzhong, 2019. "Optimal placement of phasor measurement unit in distribution networks considering the changes in topology," Applied Energy, Elsevier, vol. 250(C), pages 313-322.
    9. Aithal, Avinash & Li, Gen & Wu, Jianzhong & Yu, James, 2018. "Performance of an electrical distribution network with Soft Open Point during a grid side AC fault," Applied Energy, Elsevier, vol. 227(C), pages 262-272.
    10. Deakin, Matthew & Sarantakos, Ilias & Greenwood, David & Bialek, Janusz & Taylor, Phil C. & Walker, Sara, 2023. "Comparative analysis of services from soft open points using cost–benefit analysis," Applied Energy, Elsevier, vol. 333(C).
    11. Thamer A. H. Alghamdi & Fatih Anayi & Michael Packianather, 2022. "Modelling and Control Development of a Cascaded NPC-Based MVDC Converter for Harmonic Analysis Studies in Power Distribution Networks," Energies, MDPI, vol. 15(13), pages 1-24, July.
    12. Zhichun Yang & Fan Yang & Huaidong Min & Yu Shen & Xu Tang & Yun Hong & Liang Qin, 2023. "A Local Control Strategy for Voltage Fluctuation Suppression in a Flexible Interconnected Distribution Station Area Based on Soft Open Point," Sustainability, MDPI, vol. 15(5), pages 1-13, March.
    13. Wang, Chunling & Liu, Chunming & Zhou, Xiulin & Zhang, Gaoyuan, 2024. "Flexibility-based expansion planning of active distribution networks considering optimal operation of multi-community integrated energy systems," Energy, Elsevier, vol. 307(C).
    14. Bustos, Cristian & Watts, David & Olivares, Daniel, 2019. "The evolution over time of Distributed Energy Resource’s penetration: A robust framework to assess the future impact of prosumage under different tariff designs," Applied Energy, Elsevier, vol. 256(C).
    15. Zhenshan Zhu & Dichen Liu & Qingfen Liao & Fei Tang & Jun Jason Zhang & Huaiguang Jiang, 2018. "Optimal Power Scheduling for a Medium Voltage AC/DC Hybrid Distribution Network," Sustainability, MDPI, vol. 10(2), pages 1-22, January.
    16. Bastami, Houman & Shakarami, Mahmoud Reza & Doostizadeh, Meysam, 2021. "A decentralized cooperative framework for multi-area active distribution network in presence of inter-area soft open points," Applied Energy, Elsevier, vol. 300(C).
    17. Shamam Alwash & Sarmad Ibrahim & Azher M. Abed, 2022. "Distribution System Reconfiguration with Soft Open Point for Power Loss Reduction in Distribution Systems Based on Hybrid Water Cycle Algorithm," Energies, MDPI, vol. 16(1), pages 1-22, December.
    18. Eshan Karunarathne & Jagadeesh Pasupuleti & Janaka Ekanayake & Dilini Almeida, 2021. "The Optimal Placement and Sizing of Distributed Generation in an Active Distribution Network with Several Soft Open Points," Energies, MDPI, vol. 14(4), pages 1-20, February.
    19. Thomas Greve & Charalampos Patsios & Michael G. Pollitt & Phil Taylor, 2016. "Economic zones for future complex power systems," Working Papers EPRG 1625, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    20. Escalera, Alberto & Prodanović, Milan & Castronuovo, Edgardo D. & Roldan-Perez, Javier, 2020. "Contribution of active management technologies to the reliability of power distribution networks," Applied Energy, Elsevier, vol. 267(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2319-:d:354792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.