IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v362y2024ics0306261924003830.html
   My bibliography  Save this article

Feasible operation region estimation of virtual power plant considering heterogeneity and uncertainty of distributed energy resources

Author

Listed:
  • Chen, Lin
  • Tang, Zhiyuan
  • He, Shuaijia
  • Liu, Junyong

Abstract

The concept of the virtual power plant (VPP) has attracted extensive attention due to its distinguished capability of integrating various types of distributed energy resources (DERs). Defining the feasible operation region (FOR) is a crucial prerequisite for VPP's participation in the provision of power system services. However, considering the heterogeneity and uncertainty of DERs, it is always a challenging task to calculate the accurate FOR of VPP. In this paper, we propose a novel internal resource aggregation approach to estimate the FOR of VPP. The design of the proposed aggregation model consists of two stages. In the first stage, all the operational constraints of various DERs at the same node are expressed with a unified polytope form, and then these constraints are aggregated into one single polytope operation constraint by the computational geometry method. In the second stage, based on the aggregated polytope operation constraint at each node, combined with the dynamic line rating (DLR) and network constraints, a data-driven distributionally robust FOR estimation problem is formulated to determine the boundaries of the FOR. Numerical experiments have been conducted to validate the feasibility and superiority of the proposed approach and its applicability in handling multi-period FOR estimation.

Suggested Citation

  • Chen, Lin & Tang, Zhiyuan & He, Shuaijia & Liu, Junyong, 2024. "Feasible operation region estimation of virtual power plant considering heterogeneity and uncertainty of distributed energy resources," Applied Energy, Elsevier, vol. 362(C).
  • Handle: RePEc:eee:appene:v:362:y:2024:i:c:s0306261924003830
    DOI: 10.1016/j.apenergy.2024.123000
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924003830
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123000?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    2. Bhuiyan, Erphan A. & Hossain, Md. Zahid & Muyeen, S.M. & Fahim, Shahriar Rahman & Sarker, Subrata K. & Das, Sajal K., 2021. "Towards next generation virtual power plant: Technology review and frameworks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Berg, Kjersti & Rana, Rubi & Farahmand, Hossein, 2023. "Quantifying the benefits of shared battery in a DSO-energy community cooperation," Applied Energy, Elsevier, vol. 343(C).
    4. Anthony Papavasiliou, 2018. "Analysis of distribution locational marginal prices," LIDAM Reprints CORE 3045, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Çimen, Halil & Bazmohammadi, Najmeh & Lashab, Abderezak & Terriche, Yacine & Vasquez, Juan C. & Guerrero, Josep M., 2022. "An online energy management system for AC/DC residential microgrids supported by non-intrusive load monitoring," Applied Energy, Elsevier, vol. 307(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Xin & Li, Yang & Wang, Li & Tang, Junbo & Qiu, Haifeng & Berizzi, Alberto & Valentin, Ilea & Gao, Ciwei, 2024. "Dynamic aggregation strategy for a virtual power plant to improve flexible regulation ability," Energy, Elsevier, vol. 297(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ratha, Anubhav & Pinson, Pierre & Le Cadre, Hélène & Virag, Ana & Kazempour, Jalal, 2023. "Moving from linear to conic markets for electricity," European Journal of Operational Research, Elsevier, vol. 309(2), pages 762-783.
    2. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    3. Minjiao Zhang & Simge Küçükyavuz & Saumya Goel, 2014. "A Branch-and-Cut Method for Dynamic Decision Making Under Joint Chance Constraints," Management Science, INFORMS, vol. 60(5), pages 1317-1333, May.
    4. Ziad Ragab & Ehsan Pashajavid & Sumedha Rajakaruna, 2024. "Optimal Sizing and Economic Analysis of Community Battery Systems Considering Sensitivity and Uncertainty Factors," Energies, MDPI, vol. 17(18), pages 1-20, September.
    5. Gauvin, Charles & Delage, Erick & Gendreau, Michel, 2017. "Decision rule approximations for the risk averse reservoir management problem," European Journal of Operational Research, Elsevier, vol. 261(1), pages 317-336.
    6. Josue Campos do Prado & Wei Qiao & Liyan Qu & Julio Romero Agüero, 2019. "The Next-Generation Retail Electricity Market in the Context of Distributed Energy Resources: Vision and Integrating Framework," Energies, MDPI, vol. 12(3), pages 1-24, February.
    7. Yan, Lei & Tian, Wei & Wang, Hong & Hao, Xing & Li, Zuyi, 2023. "Robust event detection for residential load disaggregation," Applied Energy, Elsevier, vol. 331(C).
    8. Rashed Khanjani-Shiraz & Ali Babapour-Azar & Zohreh Hosseini-Noudeh & Panos M. Pardalos, 2022. "Distributionally robust maximum probability shortest path problem," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 140-167, January.
    9. Ewelina Kochanek, 2021. "Evaluation of Energy Transition Scenarios in Poland," Energies, MDPI, vol. 14(19), pages 1-13, September.
    10. Yanikoglu, I. & den Hertog, D., 2011. "Safe Approximations of Chance Constraints Using Historical Data," Other publications TiSEM ab77f6f2-248a-42f1-bde1-0, Tilburg University, School of Economics and Management.
    11. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    12. Ajla Mehinovic & Matej Zajc & Nermin Suljanovic, 2023. "Interpretation and Quantification of the Flexibility Sources Location on the Flexibility Service in the Distribution Grid," Energies, MDPI, vol. 16(2), pages 1-18, January.
    13. Lau, Jat-Syu & Jiang, Yihuo & Li, Ziyuan & Qian, Qian, 2023. "Stochastic trading of storage systems in short term electricity markets considering intraday demand response market," Energy, Elsevier, vol. 280(C).
    14. Fanwen Meng & Jin Qi & Meilin Zhang & James Ang & Singfat Chu & Melvyn Sim, 2015. "A Robust Optimization Model for Managing Elective Admission in a Public Hospital," Operations Research, INFORMS, vol. 63(6), pages 1452-1467, December.
    15. Deng, Xiangtian & Zhang, Yi & Jiang, Yi & Zhang, Yi & Qi, He, 2024. "A novel operation method for renewable building by combining distributed DC energy system and deep reinforcement learning," Applied Energy, Elsevier, vol. 353(PB).
    16. Golpîra, Hêriş & Khan, Syed Abdul Rehman, 2019. "A multi-objective risk-based robust optimization approach to energy management in smart residential buildings under combined demand and supply uncertainty," Energy, Elsevier, vol. 170(C), pages 1113-1129.
    17. Yanikoglu, I. & den Hertog, D., 2011. "Safe Approximations of Chance Constraints Using Historical Data," Discussion Paper 2011-137, Tilburg University, Center for Economic Research.
    18. Gebbran, Daniel & Mhanna, Sleiman & Ma, Yiju & Chapman, Archie C. & Verbič, Gregor, 2021. "Fair coordination of distributed energy resources with Volt-Var control and PV curtailment," Applied Energy, Elsevier, vol. 286(C).
    19. Wu, Zhongqi & Jiang, Hui & Zhou, Yangye & Li, Haoyan, 2024. "Enhancing emergency medical service location model for spatial accessibility and equity under random demand and travel time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    20. Liu, Yinyan & Ma, Jin & Xing, Xinjie & Liu, Xinglu & Wang, Wei, 2022. "A home energy management system incorporating data-driven uncertainty-aware user preference," Applied Energy, Elsevier, vol. 326(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:362:y:2024:i:c:s0306261924003830. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.