IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v268y2020ics0306261920304426.html
   My bibliography  Save this article

Non-cooperative game-based multilateral contract transactions in power-heating integrated systems

Author

Listed:
  • Wang, Lu
  • Gu, Wei
  • Wu, Zhi
  • Qiu, Haifeng
  • Pan, Guangsheng

Abstract

The distributed trading mechanism has gained substantial popularity in protecting the privacy of the agents and reducing the computation burden. The existing studies focus on the distributed transaction mechanism applied in the power market, but the distributed multilateral transaction in the integrated energy system has not been explored. This paper proposes a novel power-heating multilateral contract transaction mechanism considering spot market prices. A multi-leader multi-follower (MLMF) Stackelberg game model is formulated to describe the multilateral contract transactions between the integrated energy service providers (IESPs) and the load aggregators (LAs). In this model, the IESPs play the role of leaders to select discriminate prices for different LAs while the LAs play the role of followers to determine the energy purchases. The competition among IESPs is formulated as a non-cooperative Nash game, where each stakeholder seeks to maximize its own profit. Then, the existence of the Nash equilibrium is proved. Besides, a distributed algorithm is developed to derive the equilibrium of the proposed hierarchical decision model, through which the optimal strategies for each player can be obtained. Two case studies with different scales demonstrate the effectiveness of the proposed contract transaction mechanism and the distributed solution algorithm.

Suggested Citation

  • Wang, Lu & Gu, Wei & Wu, Zhi & Qiu, Haifeng & Pan, Guangsheng, 2020. "Non-cooperative game-based multilateral contract transactions in power-heating integrated systems," Applied Energy, Elsevier, vol. 268(C).
  • Handle: RePEc:eee:appene:v:268:y:2020:i:c:s0306261920304426
    DOI: 10.1016/j.apenergy.2020.114930
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920304426
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114930?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steven A. Gabriel & Antonio J. Conejo & J. David Fuller & Benjamin F. Hobbs & Carlos Ruiz, 2013. "Complementarity Modeling in Energy Markets," International Series in Operations Research and Management Science, Springer, edition 127, number 978-1-4419-6123-5, April.
    2. Yu, Mengmeng & Hong, Seung Ho, 2017. "Incentive-based demand response considering hierarchical electricity market: A Stackelberg game approach," Applied Energy, Elsevier, vol. 203(C), pages 267-279.
    3. Tushar, Wayes & Saha, Tapan Kumar & Yuen, Chau & Morstyn, Thomas & McCulloch, Malcolm D. & Poor, H. Vincent & Wood, Kristin L., 2019. "A motivational game-theoretic approach for peer-to-peer energy trading in the smart grid," Applied Energy, Elsevier, vol. 243(C), pages 10-20.
    4. Fumo, Nelson & Mago, Pedro J. & Chamra, Louay M., 2009. "Emission operational strategy for combined cooling, heating, and power systems," Applied Energy, Elsevier, vol. 86(11), pages 2344-2350, November.
    5. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhai, Zhiqiang (John), 2011. "Performance comparison of combined cooling heating and power system in different operation modes," Applied Energy, Elsevier, vol. 88(12), pages 4621-4631.
    6. Wei, F. & Jing, Z.X. & Wu, Peter Z. & Wu, Q.H., 2017. "A Stackelberg game approach for multiple energies trading in integrated energy systems," Applied Energy, Elsevier, vol. 200(C), pages 315-329.
    7. Sikorski, Janusz J. & Haughton, Joy & Kraft, Markus, 2017. "Blockchain technology in the chemical industry: Machine-to-machine electricity market," Applied Energy, Elsevier, vol. 195(C), pages 234-246.
    8. Xinmin Hu & Daniel Ralph, 2007. "Using EPECs to Model Bilevel Games in Restructured Electricity Markets with Locational Prices," Operations Research, INFORMS, vol. 55(5), pages 809-827, October.
    9. Blarke, Morten B., 2012. "Towards an intermittency-friendly energy system: Comparing electric boilers and heat pumps in distributed cogeneration," Applied Energy, Elsevier, vol. 91(1), pages 349-365.
    10. Rolfsman, Björn, 2004. "Combined heat-and-power plants and district heating in a deregulated electricity market," Applied Energy, Elsevier, vol. 78(1), pages 37-52, May.
    11. Samsatli, Sheila & Samsatli, Nouri J., 2018. "A multi-objective MILP model for the design and operation of future integrated multi-vector energy networks capturing detailed spatio-temporal dependencies," Applied Energy, Elsevier, vol. 220(C), pages 893-920.
    12. Fan, Songli & Ai, Qian & Piao, Longjian, 2018. "Bargaining-based cooperative energy trading for distribution company and demand response," Applied Energy, Elsevier, vol. 226(C), pages 469-482.
    13. Yan, Yi & Zhang, Chenghui & Li, Ke & Wang, Zhen, 2018. "An integrated design for hybrid combined cooling, heating and power system with compressed air energy storage," Applied Energy, Elsevier, vol. 210(C), pages 1151-1166.
    14. Wang, Qi & Zhang, Chunyu & Ding, Yi & Xydis, George & Wang, Jianhui & Østergaard, Jacob, 2015. "Review of real-time electricity markets for integrating Distributed Energy Resources and Demand Response," Applied Energy, Elsevier, vol. 138(C), pages 695-706.
    15. Gu, Wei & Lu, Shuai & Wu, Zhi & Zhang, Xuesong & Zhou, Jinhui & Zhao, Bo & Wang, Jun, 2017. "Residential CCHP microgrid with load aggregator: Operation mode, pricing strategy, and optimal dispatch," Applied Energy, Elsevier, vol. 205(C), pages 173-186.
    16. Wang, Jianxiao & Zhong, Haiwang & Wu, Chenye & Du, Ershun & Xia, Qing & Kang, Chongqing, 2019. "Incentivizing distributed energy resource aggregation in energy and capacity markets: An energy sharing scheme and mechanism design," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    17. Shu, Kangan & Ai, Xiaomeng & Fang, Jiakun & Yao, Wei & Chen, Zhe & He, Haibo & Wen, Jinyu, 2019. "Real-time subsidy based robust scheduling of the integrated power and gas system," Applied Energy, Elsevier, vol. 236(C), pages 1158-1167.
    18. Kireem Han & Joohyung Lee & Junkyun Choi, 2017. "Evaluation of Demand-Side Management over Pricing Competition of Multiple Suppliers Having Heterogeneous Energy Sources," Energies, MDPI, vol. 10(9), pages 1-16, September.
    19. Streckiene, Giedre & Martinaitis, Vytautas & Andersen, Anders N. & Katz, Jonas, 2009. "Feasibility of CHP-plants with thermal stores in the German spot market," Applied Energy, Elsevier, vol. 86(11), pages 2308-2316, November.
    20. Pan, Guangsheng & Gu, Wei & Wu, Zhi & Lu, Yuping & Lu, Shuai, 2019. "Optimal design and operation of multi-energy system with load aggregator considering nodal energy prices," Applied Energy, Elsevier, vol. 239(C), pages 280-295.
    21. Shengnan Zhao & Beibei Wang & Yachao Li & Yang Li, 2018. "Integrated Energy Transaction Mechanisms Based on Blockchain Technology," Energies, MDPI, vol. 11(9), pages 1-19, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fioriti, Davide & Frangioni, Antonio & Poli, Davide, 2021. "Optimal sizing of energy communities with fair revenue sharing and exit clauses: Value, role and business model of aggregators and users," Applied Energy, Elsevier, vol. 299(C).
    2. Wang, Ni & Liu, Ziyi & Heijnen, Petra & Warnier, Martijn, 2022. "A peer-to-peer market mechanism incorporating multi-energy coupling and cooperative behaviors," Applied Energy, Elsevier, vol. 311(C).
    3. Zheng, Weiye & Xu, Siyu & Liu, Jiawei & Zhu, Jizhong & Luo, Qingju, 2023. "Participation of strategic district heating networks in electricity markets: An arbitrage mechanism and its equilibrium analysis," Applied Energy, Elsevier, vol. 350(C).
    4. Li, Songrui & Zhang, Lihui & Nie, Lei & Wang, Jianing, 2022. "Trading strategy and benefit optimization of load aggregators in integrated energy systems considering integrated demand response: A hierarchical Stackelberg game," Energy, Elsevier, vol. 249(C).
    5. Zhao, Bingxu & Cao, Xiaodong & Duan, Pengfei, 2024. "Cooperative operation of multiple low-carbon microgrids: An optimization study addressing gaming fraud and multiple uncertainties," Energy, Elsevier, vol. 297(C).
    6. Yao, Wenliang & Wang, Chengfu & Yang, Ming & Wang, Kang & Dong, Xiaoming & Zhang, Zhenwei, 2023. "A tri-layer decision-making framework for IES considering the interaction of integrated demand response and multi-energy market clearing," Applied Energy, Elsevier, vol. 342(C).
    7. Wu, Qiong & Xie, Zhun & Ren, Hongbo & Li, Qifen & Yang, Yongwen, 2022. "Optimal trading strategies for multi-energy microgrid cluster considering demand response under different trading modes: A comparison study," Energy, Elsevier, vol. 254(PC).
    8. Li, Xiaozhu & Wang, Weiqing & Wang, Haiyun, 2021. "A novel bi-level robust game model to optimize a regionally integrated energy system with large-scale centralized renewable-energy sources in Western China," Energy, Elsevier, vol. 228(C).
    9. Zheng, Weiye & Lu, Hao & Zhu, Jizhong, 2023. "Incentivizing cooperative electricity-heat operation: A distributed asymmetric Nash bargaining mechanism," Energy, Elsevier, vol. 280(C).
    10. Wang, Haiyang & Zhang, Chenghui & Li, Ke & Liu, Shuai & Li, Shuzhen & Wang, Yu, 2021. "Distributed coordinative transaction of a community integrated energy system based on a tri-level game model," Applied Energy, Elsevier, vol. 295(C).
    11. Cai, Pengcheng & Mi, Yang & Ma, Siyuan & Li, Hongzhong & Li, Dongdong & Wang, Peng, 2023. "Hierarchical game for integrated energy system and electricity-hydrogen hybrid charging station under distributionally robust optimization," Energy, Elsevier, vol. 283(C).
    12. Yan, Sizhe & Wang, Weiqing & Li, Xiaozhu & Maimaiti, Pakezhati & Zhao, Yi, 2024. "Cross-regional green certificate transaction strategies based on a double-layer game model," Applied Energy, Elsevier, vol. 356(C).
    13. Li, Bo & Li, Xu & Su, Qingyu, 2022. "A system and game strategy for the isolated island electric-gas deeply coupled energy network," Applied Energy, Elsevier, vol. 306(PA).
    14. Li, Zhengmao & Wu, Lei & Xu, Yan & Wang, Luhao & Yang, Nan, 2023. "Distributed tri-layer risk-averse stochastic game approach for energy trading among multi-energy microgrids," Applied Energy, Elsevier, vol. 331(C).
    15. Wang, Xuejie & zhao, Huiru & Lu, Hao & Zhang, Yuanyuan & Wang, Yuwei & Wang, Jingbo, 2022. "Decentralized coordinated operation model of VPP and P2H systems based on stochastic-bargaining game considering multiple uncertainties and carbon cost," Applied Energy, Elsevier, vol. 312(C).
    16. Li, Xiaozhu & Wang, Weiqing & Wang, Haiyun, 2021. "Hybrid time-scale energy optimal scheduling strategy for integrated energy system with bilateral interaction with supply and demand," Applied Energy, Elsevier, vol. 285(C).
    17. Qiu, Haifeng & Vinod, Ashwin & Lu, Shuai & Gooi, Hoay Beng & Pan, Guangsheng & Zhang, Suhan & Veerasamy, Veerapandiyan, 2023. "Decentralized mixed-integer optimization for robust integrated electricity and heat scheduling," Applied Energy, Elsevier, vol. 350(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Haiyang & Zhang, Chenghui & Li, Ke & Liu, Shuai & Li, Shuzhen & Wang, Yu, 2021. "Distributed coordinative transaction of a community integrated energy system based on a tri-level game model," Applied Energy, Elsevier, vol. 295(C).
    2. Bhatti, Bilal Ahmad & Broadwater, Robert, 2019. "Energy trading in the distribution system using a non-model based game theoretic approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Chen, Yang & Park, Byungkwon & Kou, Xiao & Hu, Mengqi & Dong, Jin & Li, Fangxing & Amasyali, Kadir & Olama, Mohammed, 2020. "A comparison study on trading behavior and profit distribution in local energy transaction games," Applied Energy, Elsevier, vol. 280(C).
    4. Li, Jiamei & Ai, Qian & Yin, Shuangrui & Hao, Ran, 2022. "An aggregator-oriented hierarchical market mechanism for multi-type ancillary service provision based on the two-loop Stackelberg game," Applied Energy, Elsevier, vol. 323(C).
    5. Bhatti, Bilal Ahmad & Broadwater, Robert, 2020. "Distributed Nash Equilibrium Seeking for a Dynamic Micro-grid Energy Trading Game with Non-quadratic Payoffs," Energy, Elsevier, vol. 202(C).
    6. Kaijun Lin & Junyong Wu & Di Liu & Dezhi Li & Taorong Gong, 2018. "Energy Management of Combined Cooling, Heating and Power Micro Energy Grid Based on Leader-Follower Game Theory," Energies, MDPI, vol. 11(3), pages 1-21, March.
    7. Chen, Yue & Wei, Wei & Liu, Feng & Wu, Qiuwei & Mei, Shengwei, 2018. "Analyzing and validating the economic efficiency of managing a cluster of energy hubs in multi-carrier energy systems," Applied Energy, Elsevier, vol. 230(C), pages 403-416.
    8. Gu, Haifei & Li, Yang & Yu, Jie & Wu, Chen & Song, Tianli & Xu, Jinzhou, 2020. "Bi-level optimal low-carbon economic dispatch for an industrial park with consideration of multi-energy price incentives," Applied Energy, Elsevier, vol. 262(C).
    9. Sorknæs, Peter & Lund, Henrik & Andersen, Anders N., 2015. "Future power market and sustainable energy solutions – The treatment of uncertainties in the daily operation of combined heat and power plants," Applied Energy, Elsevier, vol. 144(C), pages 129-138.
    10. Kang, Ligai & Yang, Junhong & An, Qingsong & Deng, Shuai & Zhao, Jun & Wang, Hui & Li, Zelin, 2017. "Effects of load following operational strategy on CCHP system with an auxiliary ground source heat pump considering carbon tax and electricity feed in tariff," Applied Energy, Elsevier, vol. 194(C), pages 454-466.
    11. Zheng, Ling & Zhou, Bin & Cao, Yijia & Wing Or, Siu & Li, Yong & Wing Chan, Ka, 2022. "Hierarchical distributed multi-energy demand response for coordinated operation of building clusters," Applied Energy, Elsevier, vol. 308(C).
    12. Capuder, Tomislav & Mancarella, Pierluigi, 2014. "Techno-economic and environmental modelling and optimization of flexible distributed multi-generation options," Energy, Elsevier, vol. 71(C), pages 516-533.
    13. Li, Bo & Li, Xu & Su, Qingyu, 2022. "A system and game strategy for the isolated island electric-gas deeply coupled energy network," Applied Energy, Elsevier, vol. 306(PA).
    14. Lu, Qing & Lü, Shuaikang & Leng, Yajun, 2019. "A Nash-Stackelberg game approach in regional energy market considering users’ integrated demand response," Energy, Elsevier, vol. 175(C), pages 456-470.
    15. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    16. Afzal S. Siddiqui & Sauleh A. Siddiqui, 2022. "Ambiguities and nonmonotonicities under prosumer power," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 492-532, October.
    17. Arriet, Andrea & Matis, Timothy I. & Feijoo, Felipe, 2024. "Electricity sector impacts of water taxation for natural gas supply under high renewable generation," Energy, Elsevier, vol. 294(C).
    18. Lv, Chaoxian & Liang, Rui & Zhang, Ge & Zhang, Xiaotong & Jin, Wei, 2023. "Energy accommodation-oriented interaction of active distribution network and central energy station considering soft open points," Energy, Elsevier, vol. 268(C).
    19. Zhu, Xu & Sun, Yuanzhang & Yang, Jun & Dou, Zhenlan & Li, Gaojunjie & Xu, Chengying & Wen, Yuxin, 2022. "Day-ahead energy pricing and management method for regional integrated energy systems considering multi-energy demand responses," Energy, Elsevier, vol. 251(C).
    20. Wang, Longze & Liu, Jinxin & Yuan, Rongfang & Wu, Jing & Zhang, Delong & Zhang, Yan & Li, Meicheng, 2020. "Adaptive bidding strategy for real-time energy management in multi-energy market enhanced by blockchain," Applied Energy, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:268:y:2020:i:c:s0306261920304426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.