IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v308y2024ics0360544224020760.html
   My bibliography  Save this article

Robust optimization for integrated energy systems based on multi-energy trading

Author

Listed:
  • Gao, Jin
  • Shao, Zhenguo
  • Chen, Feixiong
  • Lak, Mohammadreza

Abstract

Amid rising energy demands and environmental concerns, integrated energy systems (IESs) face conflicting interests. Conventional strategies of interest distribution face issues such as irrational resource allocation. Accordingly, establishing energy trading strategies with multiple stakeholders becomes essential. This paper proposes a robust optimization (RO) for IESs based on multi-energy trading to reduce energy trading cost. In this regard, a single-leader-multi-follower Stackelberg game is first modeled where IES acts as the leader, and the users and the electric vehicles (EVs) act as the followers. Secondly, this model is transformed into a single-layer linear model and integrated into the multi-stage RO. With this, the nonanticipativity in the two-stage RO can be effectively handled. Besides, by constructing multi-interval uncertainty sets for renewable energy, load, and electricity prices, the conservatism of the model is reduced, making the optimization results closer to actual condition. Noteworthy that the Nash bargaining method ensures a fair distribution of benefits among IESs and encourages them to participate in energy trading. Finally, the multi-energy trading model is solved using the prediction-correction-based alternating direction method with multipliers (PCB-ADMM) algorithm. The PCB-ADMM not only protects each IES’s privacy but also has less execution time than the ADMM algorithm. The effectiveness of the proposed strategy is validated through simulation using Matlab.

Suggested Citation

  • Gao, Jin & Shao, Zhenguo & Chen, Feixiong & Lak, Mohammadreza, 2024. "Robust optimization for integrated energy systems based on multi-energy trading," Energy, Elsevier, vol. 308(C).
  • Handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224020760
    DOI: 10.1016/j.energy.2024.132302
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224020760
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132302?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yan, Haoran & Hou, Hongjuan & Deng, Min & Si, Lengge & Wang, Xi & Hu, Eric & Zhou, Rhonin, 2024. "Stackelberg game theory based model to guide users’ energy use behavior, with the consideration of flexible resources and consumer psychology, for an integrated energy system," Energy, Elsevier, vol. 288(C).
    2. Xu, Jiazhu & Yi, Yuqin, 2023. "Multi-microgrid low-carbon economy operation strategy considering both source and load uncertainty: A Nash bargaining approach," Energy, Elsevier, vol. 263(PB).
    3. Zhang, Zhenwei & Wang, Chengfu & Wu, Qiuwei & Dong, Xiaoming, 2024. "Optimal dispatch for cross-regional integrated energy system with renewable energy uncertainties: A unified spatial-temporal cooperative framework," Energy, Elsevier, vol. 292(C).
    4. Zhou, Dezhi & Wu, Chuantao & Sui, Quan & Lin, Xiangning & Li, Zhengtian, 2022. "A novel all-electric-ship-integrated energy cooperation coalition for multi-island microgrids," Applied Energy, Elsevier, vol. 320(C).
    5. Lyu, Xiangmei & Liu, Tianqi & Liu, Xuan & He, Chuan & Nan, Lu & Zeng, Hong, 2023. "Low-carbon robust economic dispatch of park-level integrated energy system considering price-based demand response and vehicle-to-grid," Energy, Elsevier, vol. 263(PB).
    6. Wang, Yifeng & Jiang, Aihua & Wang, Rui & Tian, Junyang, 2024. "A canonical coalitional game model incorporating motivational psychology analysis for incentivizing stable direct energy trading in smart grid," Energy, Elsevier, vol. 289(C).
    7. Wu, Min & Xu, Jiazhu & Shi, Zhenglu, 2023. "Low carbon economic dispatch of integrated energy system considering extended electric heating demand response," Energy, Elsevier, vol. 278(PA).
    8. Tan, Jinjing & Li, Yang & Zhang, Xiaoping & Pan, Weiqi & Ruan, Wenjun, 2023. "Operation of a commercial district integrated energy system considering dynamic integrated demand response: A Stackelberg game approach," Energy, Elsevier, vol. 274(C).
    9. Wang, Yudong & Hu, Junjie, 2023. "Two-stage energy management method of integrated energy system considering pre-transaction behavior of energy service provider and users," Energy, Elsevier, vol. 271(C).
    10. Li, Songrui & Zhang, Lihui & Nie, Lei & Wang, Jianing, 2022. "Trading strategy and benefit optimization of load aggregators in integrated energy systems considering integrated demand response: A hierarchical Stackelberg game," Energy, Elsevier, vol. 249(C).
    11. Wang, Zaichuang & Chen, Laijun & Li, Xiaozhu & Mei, Shengwei, 2023. "A Nash bargaining model for energy sharing between micro-energy grids and energy storage," Energy, Elsevier, vol. 283(C).
    12. Tan, Jinjing & Pan, Weiqi & Li, Yang & Hu, Haoming & Zhang, Can, 2023. "Energy-sharing operation strategy of multi-district integrated energy systems considering carbon and renewable energy certificate trading," Applied Energy, Elsevier, vol. 339(C).
    13. Haider, Sajjad & Rizvi, Rida e Zahra & Walewski, John & Schegner, Peter, 2022. "Investigating peer-to-peer power transactions for reducing EV induced network congestion," Energy, Elsevier, vol. 254(PB).
    14. Li, Peng & Wang, Zixuan & Yang, Weihong & Liu, Haitao & Yin, Yunxing & Wang, Jiahao & Guo, Tianyu, 2021. "Hierarchically partitioned coordinated operation of distributed integrated energy system based on a master-slave game," Energy, Elsevier, vol. 214(C).
    15. Gao, Yang & Ai, Qian & He, Xing & Fan, Songli, 2023. "Coordination for regional integrated energy system through target cascade optimization," Energy, Elsevier, vol. 276(C).
    16. Huang, Yujing & Wang, Yudong & Liu, Nian, 2022. "A two-stage energy management for heat-electricity integrated energy system considering dynamic pricing of Stackelberg game and operation strategy optimization," Energy, Elsevier, vol. 244(PA).
    17. Wang, Liying & Lin, Jialin & Dong, Houqi & Wang, Yuqing & Zeng, Ming, 2023. "Demand response comprehensive incentive mechanism-based multi-time scale optimization scheduling for park integrated energy system," Energy, Elsevier, vol. 270(C).
    18. Li, Zhengmao & Wu, Lei & Xu, Yan & Wang, Luhao & Yang, Nan, 2023. "Distributed tri-layer risk-averse stochastic game approach for energy trading among multi-energy microgrids," Applied Energy, Elsevier, vol. 331(C).
    19. Wei, Chun & Shen, Zhuzheng & Xiao, Dongliang & Wang, Licheng & Bai, Xiaoqing & Chen, Haoyong, 2021. "An optimal scheduling strategy for peer-to-peer trading in interconnected microgrids based on RO and Nash bargaining," Applied Energy, Elsevier, vol. 295(C).
    20. Zhong, Junjie & Cao, Yijia & Li, Yong & Tan, Yi & Peng, Yanjian & Cao, Lihua & Zeng, Zilong, 2021. "Distributed modeling considering uncertainties for robust operation of integrated energy system," Energy, Elsevier, vol. 224(C).
    21. Zhou, Yuzhou & Zhao, Jiexing & Zhai, Qiaozhu, 2021. "100% renewable energy: A multi-stage robust scheduling approach for cascade hydropower system with wind and photovoltaic power," Applied Energy, Elsevier, vol. 301(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Xun & Shao, Zhenguo & Chen, Feixiong & Cheng, Guoyang, 2024. "Multi-game optimization operation strategy for integrated energy system considering spatiotemporal correlation of renewable energy," Energy, Elsevier, vol. 303(C).
    2. Ma, Lan & Xie, Lirong & Ye, Jiahao & Bian, Yifan, 2024. "Two-stage dispatching strategy for park-level integrated energy systems based on a master-slave-cooperative hybrid game model," Renewable Energy, Elsevier, vol. 232(C).
    3. Han, Fengwu & Zeng, Jianfeng & Lin, Junjie & Zhao, Yunlong & Gao, Chong, 2023. "A stochastic hierarchical optimization and revenue allocation approach for multi-regional integrated energy systems based on cooperative games," Applied Energy, Elsevier, vol. 350(C).
    4. Yang, Yulong & Zhao, Yang & Yan, Gangui & Mu, Gang & Chen, Zhe, 2024. "Real time aggregation control of P2H loads in a virtual power plant based on a multi-period stackelberg game," Energy, Elsevier, vol. 303(C).
    5. Tang, Bao-Jun & Cao, Xi-Lin & Li, Ru & Xiang, Zhi-Bo & Zhang, Sen, 2024. "Economic and low-carbon planning for interconnected integrated energy systems considering emerging technologies and future development trends," Energy, Elsevier, vol. 302(C).
    6. Cai, Pengcheng & Mi, Yang & Ma, Siyuan & Li, Hongzhong & Li, Dongdong & Wang, Peng, 2023. "Hierarchical game for integrated energy system and electricity-hydrogen hybrid charging station under distributionally robust optimization," Energy, Elsevier, vol. 283(C).
    7. Liang, Ziwen & Mu, Longhua, 2024. "Multi-agent low-carbon optimal dispatch of regional integrated energy system based on mixed game theory," Energy, Elsevier, vol. 295(C).
    8. Li, Ke & Ye, Ning & Li, Shuzhen & Wang, Haiyang & Zhang, Chenghui, 2023. "Distributed collaborative operation strategies in multi-agent integrated energy system considering integrated demand response based on game theory," Energy, Elsevier, vol. 273(C).
    9. Lv, Chaoxian & Liang, Rui & Zhang, Ge & Zhang, Xiaotong & Jin, Wei, 2023. "Energy accommodation-oriented interaction of active distribution network and central energy station considering soft open points," Energy, Elsevier, vol. 268(C).
    10. Huang, Shangjiu & Lu, Hao & Chen, Maozhi & Zhao, Wenjun, 2023. "Integrated energy system scheduling considering the correlation of uncertainties," Energy, Elsevier, vol. 283(C).
    11. Zhao, Wanbing & Chang, Weiguang & Yang, Qiang, 2024. "Collaborative energy management of interconnected regional integrated energy systems considering spatio-temporal characteristics," Renewable Energy, Elsevier, vol. 235(C).
    12. Wang, Zhuo & Hou, Hui & Zhao, Bo & Zhang, Leiqi & Shi, Ying & Xie, Changjun, 2024. "Risk-averse stochastic capacity planning and P2P trading collaborative optimization for multi-energy microgrids considering carbon emission limitations: An asymmetric Nash bargaining approach," Applied Energy, Elsevier, vol. 357(C).
    13. Zhihan Shi & Weisong Han & Guangming Zhang & Zhiqing Bai & Mingxiang Zhu & Xiaodong Lv, 2022. "Research on Low-Carbon Energy Sharing through the Alliance of Integrated Energy Systems with Multiple Uncertainties," Energies, MDPI, vol. 15(24), pages 1-20, December.
    14. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    15. Jiang, Meihui & Xu, Zhenjiang & Zhu, Hongyu & Hwang Goh, Hui & Agustiono Kurniawan, Tonni & Liu, Tianhao & Zhang, Dongdong, 2024. "Integrated demand response modeling and optimization technologies supporting energy internet," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    16. Zhou, Yuan & Wang, Jiangjiang & Yang, Mingxu & Xu, Hangwei, 2023. "Hybrid active and passive strategies for chance-constrained bilevel scheduling of community multi-energy system considering demand-side management and consumer psychology," Applied Energy, Elsevier, vol. 349(C).
    17. Mohseni, Shayan & Pishvaee, Mir Saman, 2023. "Energy trading and scheduling in networked microgrids using fuzzy bargaining game theory and distributionally robust optimization," Applied Energy, Elsevier, vol. 350(C).
    18. Liu, Xinrui & Li, Ming & Wang, Rui & Feng, Junbo & Dong, Chaoyu & Sun, Qiuye, 2024. "Low-carbon operation of multi-virtual power plants with hydrogen doping and load aggregator based on bilateral cooperative game," Energy, Elsevier, vol. 309(C).
    19. Hou, Hui & Ge, Xiangdi & Yan, Yulin & Lu, Yanchao & Zhang, Ji & Dong, Zhao Yang, 2024. "An integrated energy system “green-carbon” offset mechanism and optimization method with Stackelberg game," Energy, Elsevier, vol. 294(C).
    20. Wang, Haiyang & Li, Ke & Zhang, Chenghui & Chen, Jianfei, 2024. "Capacity and operation joint optimization for integrated energy system based on Nash bargaining game," Energy, Elsevier, vol. 305(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224020760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.