IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v308y2024ics0360544224020760.html
   My bibliography  Save this article

Robust optimization for integrated energy systems based on multi-energy trading

Author

Listed:
  • Gao, Jin
  • Shao, Zhenguo
  • Chen, Feixiong
  • Lak, Mohammadreza

Abstract

Amid rising energy demands and environmental concerns, integrated energy systems (IESs) face conflicting interests. Conventional strategies of interest distribution face issues such as irrational resource allocation. Accordingly, establishing energy trading strategies with multiple stakeholders becomes essential. This paper proposes a robust optimization (RO) for IESs based on multi-energy trading to reduce energy trading cost. In this regard, a single-leader-multi-follower Stackelberg game is first modeled where IES acts as the leader, and the users and the electric vehicles (EVs) act as the followers. Secondly, this model is transformed into a single-layer linear model and integrated into the multi-stage RO. With this, the nonanticipativity in the two-stage RO can be effectively handled. Besides, by constructing multi-interval uncertainty sets for renewable energy, load, and electricity prices, the conservatism of the model is reduced, making the optimization results closer to actual condition. Noteworthy that the Nash bargaining method ensures a fair distribution of benefits among IESs and encourages them to participate in energy trading. Finally, the multi-energy trading model is solved using the prediction-correction-based alternating direction method with multipliers (PCB-ADMM) algorithm. The PCB-ADMM not only protects each IES’s privacy but also has less execution time than the ADMM algorithm. The effectiveness of the proposed strategy is validated through simulation using Matlab.

Suggested Citation

  • Gao, Jin & Shao, Zhenguo & Chen, Feixiong & Lak, Mohammadreza, 2024. "Robust optimization for integrated energy systems based on multi-energy trading," Energy, Elsevier, vol. 308(C).
  • Handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224020760
    DOI: 10.1016/j.energy.2024.132302
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224020760
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132302?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224020760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.