IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i5p1956-d1346982.html
   My bibliography  Save this article

Vehicle Driving Behavior Analysis and Unified Modeling in Urban Road Scenarios

Author

Listed:
  • Li Zhang

    (School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266520, China)

  • Dayi Qu

    (School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China)

  • Xiaojing Zhang

    (School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China)

  • Shouchen Dai

    (School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China)

  • Qikun Wang

    (School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China)

Abstract

To improve the simulation accuracy and efficiency of microscopic urban traffic, a unified modeling method considering the behavioral characteristics of vehicle drivers is proposed by considering the lane-changing vehicles on the inlet lanes of signalized intersections and their approach following vehicles on the target lanes as research objects. Based on the driver’s multidirectional, multi-vehicle anticipation ability and introducing lateral vehicle influence coefficients, the full velocity difference car-following model was extended to microscopic traffic models that consider the driver’s capacity for multi-directional, multi-vehicle anticipation. The extended model can describe longitudinal movements of lane changing and car followers using lateral vehicle influential parameters. The influences of traffic control signals and the type of lane change on drivers’ decisions were integrated into the model by reformulating the optimal velocity function of the basic car following the model. Similar modeling methods and components were applied to formulate four groups of experimental models and one group of test models. Vehicle trajectory data and manual observations were collected on urban arteries to calibrate and evaluate the research models, experimental models, and test models. The results show that the car-following behavior is more sensitive to the variation in the status of the lateral moving vehicle and change of lane-changing type compared to lane-changing behavior during the lane-changing process. In addition, when lane changing gradually encroaches on the target lane, the vehicle observes the driving conditions and adjusts its driving behaviors differently. This research helps to analyze travel characteristics and influence mechanisms of vehicles on urban roads, which is a guide for the future development of sustainable transportation and self-driving vehicles and promoting the efficient operation of urban transportation systems.

Suggested Citation

  • Li Zhang & Dayi Qu & Xiaojing Zhang & Shouchen Dai & Qikun Wang, 2024. "Vehicle Driving Behavior Analysis and Unified Modeling in Urban Road Scenarios," Sustainability, MDPI, vol. 16(5), pages 1-18, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:1956-:d:1346982
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/5/1956/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/5/1956/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gunay, Banihan, 2007. "Car following theory with lateral discomfort," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 722-735, August.
    2. Bowen Gong & Fanting Wang & Ciyun Lin & Dayong Wu, 2022. "Modeling HDV and CAV Mixed Traffic Flow on a Foggy Two-Lane Highway with Cellular Automata and Game Theory Model," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    3. Maosheng Li & Jing Fan & Jaeyoung Lee, 2023. "Modeling Car-Following Behavior with Different Acceptable Safety Levels," Sustainability, MDPI, vol. 15(7), pages 1-23, April.
    4. Montanino, Marcello & Punzo, Vincenzo, 2021. "On string stability of a mixed and heterogeneous traffic flow: A unifying modelling framework," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 133-154.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qin, Yanyan & Liu, Mingxuan & Hao, Wei, 2024. "Energy-optimal car-following model for connected automated vehicles considering traffic flow stability," Energy, Elsevier, vol. 298(C).
    2. Li, Yongfu & Zhao, Hang & Zhang, Li & Zhang, Chao, 2018. "An extended car-following model incorporating the effects of lateral gap and gradient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 177-189.
    3. Renjie Li & Yanyan Qin, 2024. "Car-Following Strategy Involving Stabilizing Traffic Flow with Connected Automated Vehicles to Reduce Particulate Matter (PM) Emissions in Rainy Weather," Sustainability, MDPI, vol. 16(5), pages 1-23, February.
    4. Yao, Zhihong & Deng, Haowei & Chen, Zikang & He, Xiang & Ai, Yi & Wu, Yunxia, 2024. "Linear internal stability for mixed traffic flow of CAVs with different automation levels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).
    5. Marzano, Vittorio & Tinessa, Fiore & Fiori, Chiara & Tocchi, Daniela & Papola, Andrea & Aponte, Dario & Cascetta, Ennio & Simonelli, Fulvio, 2022. "Impacts of truck platooning on the multimodal freight transport market: An exploratory assessment on a case study in Italy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 163(C), pages 100-125.
    6. Wu, Xuelian & Postorino, Maria Nadia & Mantecchini, Luca, 2024. "Impacts of connected autonomous vehicle platoon breakdown on highway," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 650(C).
    7. Yuansheng Cao & Yonggang Liao & Jiancong Lai & Tianjie Shen & Xiaofei Wang, 2024. "Study on the Deviation Characteristics of Driving Trajectories for Autonomous Vehicles and the Design of Dedicated Lane Widths," Sustainability, MDPI, vol. 16(21), pages 1-18, October.
    8. Kanagaraj, Venkatesan & Treiber, Martin, 2018. "Self-driven particle model for mixed traffic and other disordered flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1-11.
    9. Chengju Song & Hongfei Jia, 2022. "Multi-State Car-Following Behavior Simulation in a Mixed Traffic Flow for ICVs and MDVs," Sustainability, MDPI, vol. 14(20), pages 1-12, October.
    10. Dai, Yulu & Yang, Yuwei & Wang, Zhiyuan & Luo, YinJie, 2022. "Exploring the impact of damping on Connected and Autonomous Vehicle platoon safety with CACC," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    11. Ponnu, Balaji & Coifman, Benjamin, 2015. "Speed-spacing dependency on relative speed from the adjacent lane: New insights for car following models," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 74-90.
    12. Bouadi, Marouane & Jia, Bin & Jiang, Rui & Li, Xingang & Gao, Zi-You, 2022. "Stochastic factors and string stability of traffic flow: Analytical investigation and numerical study based on car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 96-122.
    13. Yao, Zhihong & Gu, Qiufan & Jiang, Yangsheng & Ran, Bin, 2022. "Fundamental diagram and stability of mixed traffic flow considering platoon size and intensity of connected automated vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    14. Qi, Weiwei & Ma, Siwei & Fu, Chuanyun, 2023. "An improved car-following model considering the influence of multiple preceding vehicles in the same and two adjacent lanes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P2).
    15. Karthiga Kasi & Gunasekaran Karuppanan, 2024. "Framework to Identify Vehicle Platoons under Heterogeneous Traffic Conditions on Urban Roads," Sustainability, MDPI, vol. 16(2), pages 1-20, January.
    16. Montanino, Marcello & Monteil, Julien & Punzo, Vincenzo, 2021. "From homogeneous to heterogeneous traffic flows: Lp String stability under uncertain model parameters," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 136-154.
    17. Faryal Ali & Zawar Hussain Khan & Khurram Shehzad Khattak & Thomas Aaron Gulliver & Akhtar Nawaz Khan, 2022. "A Microscopic Heterogeneous Traffic Flow Model Considering Distance Headway," Mathematics, MDPI, vol. 11(1), pages 1-20, December.
    18. Yi, Ziwei & Lu, Wenqi & Qu, Xu & Gan, Jing & Li, Linheng & Ran, Bin, 2022. "A bidirectional car-following model considering distance balance between adjacent vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    19. Banihan Gunay, 2007. "Detection Algorithms of Intentional Car Following on Smart Networks: A Primary Methodology," Transportation Planning and Technology, Taylor & Francis Journals, vol. 30(6), pages 627-642, July.
    20. Peng, Guanghan & Wang, Wanlin & Tan, Huili, 2023. "Chaotic jam and phase transitions in heterogeneous lattice model integrating the delay characteristics difference with passing effect under autonomous and human-driven vehicles environment," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:1956-:d:1346982. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.