IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v295y2024ics0360544224008569.html
   My bibliography  Save this article

An innovative geothermal based multigeneration plant: Thermodynamic and economic assessment for sustainable outputs with compressed hydrogen

Author

Listed:
  • Kelem, Ummu Rumeysa
  • Yilmaz, Fatih

Abstract

In the net-zero emissions strategy adopted to struggle global warming and environmental difficulties, the effective utilization of clean energy sources is important. In this framework, geothermal sources are an important renewable energy sources and offer many advantages. In the developed new research, a geothermal energy-supported combined configuration is considered and proposed for sustainable hydrogen, power, freshwater, hot water, and drying. In this system, an exhaustive thermodynamic examination, -energy, exergy efficiency, and exergy destruction-, as well as an economic analysis are carried out. This newly designed configuration comprises a flash-geothermal circuit, a transcritical CO2 fluid Rankine plant (tRC), a dryer, a multi-effect desalination (MED) component, and a Proton exchange membrane (PEME) and hydrogen storage units. In light of the analysis outcomes, the power generation load of the system is 1587 kW and the hydrogen quantity is calculated 0.00223 kg/s. In addition, the thermodynamic performance indicators, which are energetic and energetic performance of the tRC are determined as 10.91% and 41.68%. Moreover, the energetic efficiency of the modeled configuration is determined to be 23.18%, whereas the exergetic performance indicator is found to be 28.57%. Regarding the economic cost evaluations, the total cost of this model is calculated as 171.5 $/h.

Suggested Citation

  • Kelem, Ummu Rumeysa & Yilmaz, Fatih, 2024. "An innovative geothermal based multigeneration plant: Thermodynamic and economic assessment for sustainable outputs with compressed hydrogen," Energy, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224008569
    DOI: 10.1016/j.energy.2024.131084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224008569
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Fei & Yang, Changjin & Li, Biao & Silang, Yangji & Zhu, Yuhui & Farkoush, Saeid Gholami, 2022. "Thermodynamic and economic sensitivity analyses of a geothermal-based trigeneration system; performance enhancement through determining the best zeotropic working fluid," Energy, Elsevier, vol. 246(C).
    2. Karaca, Ali Erdogan & Dincer, Ibrahim & Nitefor, Michael, 2023. "A new renewable energy system integrated with compressed air energy storage and multistage desalination," Energy, Elsevier, vol. 268(C).
    3. Mahmoudan, Alireza & Esmaeilion, Farbod & Hoseinzadeh, Siamak & Soltani, Madjid & Ahmadi, Pouria & Rosen, Marc, 2022. "A geothermal and solar-based multigeneration system integrated with a TEG unit: Development, 3E analyses, and multi-objective optimization," Applied Energy, Elsevier, vol. 308(C).
    4. Yilmaz, Fatih, 2022. "Development and modeling of the geothermal energy based multigeneration plant for beneficial outputs: Thermo-economic and environmental analysis approach," Renewable Energy, Elsevier, vol. 189(C), pages 1074-1085.
    5. Li, Jiaojiao & Zoghi, Mohammad & Zhao, Linfeng, 2022. "Thermo-economic assessment and optimization of a geothermal-driven tri-generation system for power, cooling, and hydrogen production," Energy, Elsevier, vol. 244(PB).
    6. Dan, Ma & He, Ang & Ren, Qiliang & Li, Wenbo & Huang, Kang & Wang, Xiangda & Feng, Boxuan & Sardari, Farshid, 2024. "Multi-aspect evaluation of a novel double-flash geothermally-powered integrated multigeneration system for generating power, cooling, and liquefied Hydrogen," Energy, Elsevier, vol. 289(C).
    7. Soltani, M. & Moradi Kashkooli, Farshad & Souri, Mohammad & Rafiei, Behnam & Jabarifar, Mohammad & Gharali, Kobra & Nathwani, Jatin S., 2021. "Environmental, economic, and social impacts of geothermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    8. Karayel, G. Kubilay & Javani, Nader & Dincer, Ibrahim, 2022. "Effective use of geothermal energy for hydrogen production: A comprehensive application," Energy, Elsevier, vol. 249(C).
    9. Li, Kun & Ding, Yi-Zhe & Ai, Chen & Sun, Hongwei & Xu, Yi-Peng & Nedaei, Navid, 2022. "Multi-objective optimization and multi-aspect analysis of an innovative geothermal-based multi-generation energy system for power, cooling, hydrogen, and freshwater production," Energy, Elsevier, vol. 245(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asgari, Armin & Tajaddod, Hadi & Zirak, Reza & Mahmoodi, Reza, 2024. "Proposal of a geothermal-driven multigeneration system for power, cooling, and fresh water: Thermoeconomic assessment and optimization," Energy, Elsevier, vol. 301(C).
    2. Zhao, Lu & Hai, Qing & Mei, Junlun, 2024. "An integrated approach to green power, cooling, and freshwater production from geothermal and solar energy sources; case study of Jiangsu, China," Energy, Elsevier, vol. 305(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Xiao & Cai, Yangchao & Li, Xuetao, 2024. "Process arrangement and multi-aspect study of a novel environmentally-friendly multigeneration plant relying on a geothermal-based plant combined with the goswami cycle booted by kalina and desalinati," Energy, Elsevier, vol. 299(C).
    2. Zhang, Xiaofeng & Su, Junjie & Jiao, Fan & Zeng, Rong & Pan, Jinjun & He, Xu & Deng, Qiaolin & Li, Hongqiang, 2024. "Performance investigation and operation optimization of an innovative hybrid renewable energy integration system for commercial building complex and hydrogen vehicles," Energy, Elsevier, vol. 301(C).
    3. Li, Ruiheng & Xu, Dong & Tian, Hao & Zhu, Yiping, 2023. "Multi-objective study and optimization of a solar-boosted geothermal flash cycle integrated into an innovative combined power and desalinated water production process: Application of a case study," Energy, Elsevier, vol. 282(C).
    4. Liu, Huan & Guo, Wei & Liu, Shuqin, 2022. "Comparative techno-economic performance analysis of underground coal gasification and surface coal gasification based coal-to-hydrogen process," Energy, Elsevier, vol. 258(C).
    5. Zhu, Chaoyang & Wang, Mengxia & Guo, Mengxing & Deng, Jinxin & Du, Qipei & Wei, Wei & Zhang, Yunxiang & Mohebbi, Amir, 2024. "An innovative process design and multi-criteria study/optimization of a biomass digestion-supercritical carbon dioxide scenario toward boosting a geothermal-driven cogeneration system for power and he," Energy, Elsevier, vol. 292(C).
    6. R.V., Rohit & R., Vipin Raj & Kiplangat, Dennis C. & R., Veena & Jose, Rajan & Pradeepkumar, A.P. & Kumar, K. Satheesh, 2023. "Tracing the evolution and charting the future of geothermal energy research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    7. Shoaei, Mersad & Hajinezhad, Ahmad & Moosavian, Seyed Farhan, 2023. "Design, energy, exergy, economy, and environment (4E) analysis, and multi-objective optimization of a novel integrated energy system based on solar and geothermal resources," Energy, Elsevier, vol. 280(C).
    8. Assareh, Ehsanolah & Sahrakar, Mohammad & parvaz, Mehdi & Agarwal, Neha & Firoozzadeh, Mohammad & Lee, Moonyong, 2024. "A multi-energy production system utilizing an absorption refrigeration cycle, and a PEM electrolyzer powered by geothermal energy: Thermoeconomic assessment and optimization," Renewable Energy, Elsevier, vol. 229(C).
    9. Sun, Wen & Feng, Li & Abed, Azher M. & Sharma, Aman & Arsalanloo, Akbar, 2022. "Thermoeconomic assessment of a renewable hybrid RO/PEM electrolyzer integrated with Kalina cycle and solar dryer unit using response surface methodology (RSM)," Energy, Elsevier, vol. 260(C).
    10. Zhao, Tengfei & Ahmad, Sayed Fayaz & Agrawal, Manoj Kumar & Ahmad Bani Ahmad, Ahmad Yahiya & Ghfar, Ayman A. & Valsalan, Prajoona & Shah, Nehad Ali & Gao, Xiaomin, 2024. "Design and thermo-enviro-economic analyses of a novel thermal design process for a CCHP-desalination application using LNG regasification integrated with a gas turbine power plant," Energy, Elsevier, vol. 295(C).
    11. Li, Shuguang & Leng, Yuchi & Chaturvedi, Rishabh & Dutta, Ashit Kumar & Abdullaeva, Barno Sayfutdinovna & Fouad, Yasser, 2024. "Sustainable freshwater/energy supply through geothermal-centered layout tailored with humidification-dehumidification desalination unit; Optimized by regression machine learning techniques," Energy, Elsevier, vol. 303(C).
    12. Alharbi, Abdullah G. & Fathy, Ahmed & Rezk, Hegazy & Abdelkareem, Mohammad Ali & Olabi, A.G., 2023. "An efficient war strategy optimization reconfiguration method for improving the PV array generated power," Energy, Elsevier, vol. 283(C).
    13. Zhang, Tingsheng & Kong, Lingji & Zhu, Zhongyin & Wu, Xiaoping & Li, Hai & Zhang, Zutao & Yan, Jinyue, 2024. "An electromagnetic vibration energy harvesting system based on series coupling input mechanism for freight railroads," Applied Energy, Elsevier, vol. 353(PA).
    14. Mehrenjani, Javad Rezazadeh & Gharehghani, Ayat & Ahmadi, Samareh & Powell, Kody M., 2023. "Dynamic simulation of a triple-mode multi-generation system assisted by heat recovery and solar energy storage modules: Techno-economic optimization using machine learning approaches," Applied Energy, Elsevier, vol. 348(C).
    15. Feng, Yong-qiang & Wang, Yu & Yao, Lin & Xu, Jing-wei & Zhang, Fei-yang & He, Zhi-xia & Wang, Qian & Ma, Jian-long, 2023. "Parametric analysis and thermal-economical optimization of a parallel dual pressure evaporation and two stage regenerative organic Rankine cycle using mixture working fluids," Energy, Elsevier, vol. 263(PA).
    16. Yi Zhang & Wenjing Li & Guodong Chen, 2022. "A Thermodynamic Model for Carbon Dioxide Storage in Underground Salt Caverns," Energies, MDPI, vol. 15(12), pages 1-20, June.
    17. Dou, Zhenhai & Zou, Yunhe & Mohebbi, Amir, 2024. "Design and multi-aspect analysis of a geothermal and biomass dual-source power, cooling, heating, and hybrid freshwater production system," Energy, Elsevier, vol. 293(C).
    18. Simona Di Fraia & Rafał Figaj & Musannif Shah & Laura Vanoli, 2024. "Biomass-Driven Polygeneration Coupled to Power-to-X: An Energy and Economic Comparison Between On-Site Electric Vehicle Charging and Hydrogen Production," Energies, MDPI, vol. 17(21), pages 1-24, November.
    19. Kaczmarczyk, Michał & Mukti, Mentari & Ghaffour, Noreddine & Soukane, Sofiane & Bundschuh, Jochen & Tomaszewska, Barbara, 2024. "Renewable energy-driven membrane distillation in the context of life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    20. Wijayasekera, Sachindra Chamode & Hewage, Kasun & Hettiaratchi, Patrick & Razi, Faran & Sadiq, Rehan, 2023. "Planning and development of waste-to-hydrogen conversion facilities: A parametric analysis," Energy, Elsevier, vol. 278(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224008569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.