IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v292y2024ics0360544224003426.html
   My bibliography  Save this article

Study on the preparation of high value-added activated carbon from petroleum coke: Comparison between one- and two-step methods for carbonization and activation

Author

Listed:
  • Feng, Hongcui
  • Zhou, Tianhong
  • Ge, Lichao
  • Li, Qian
  • Zhao, Chan
  • Huang, Jing
  • Wang, Yang

Abstract

To study the effects of carbonization on the preparation of activated carbon, petroleum coke-based activated carbon was prepared via a one-step method involving carbonization and activation as well as a two-step method involving carbonization followed by activation. In addition, the effects of carbonization temperature (550–750 °C) and activation heating rate (10 °C/min and 20 °C/min) on the surface morphology and pore structure of the activated carbon were investigated, and the adsorption performance of the activated carbon for iodine was analyzed. The results showed that precarbonization did not increase, but rather decreased, the number of surface oxygen-containing functional groups. In addition, increasing the heating rate to 20 °C/min effectively increased the number of oxygen-containing functional groups and delayed the merging of pores. Carbonization of activated carbon did not result in an increase in its specific surface area; rather, its specific surface area was reduced by up to 55.5 %. However, at a heating rate of 20 °C/min, the activated carbon prepared by carbonization exhibited a better microporous structure. Based on the iodine adsorption values, it was found that the adsorption performance of iodine was determined by the micropore diameter of the activated carbon but not the specific surface area.

Suggested Citation

  • Feng, Hongcui & Zhou, Tianhong & Ge, Lichao & Li, Qian & Zhao, Chan & Huang, Jing & Wang, Yang, 2024. "Study on the preparation of high value-added activated carbon from petroleum coke: Comparison between one- and two-step methods for carbonization and activation," Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224003426
    DOI: 10.1016/j.energy.2024.130570
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224003426
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130570?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shan, Yuli & Guan, Dabo & Meng, Jing & Liu, Zhu & Schroeder, Heike & Liu, Jianghua & Mi, Zhifu, 2018. "Rapid growth of petroleum coke consumption and its related emissions in China," Applied Energy, Elsevier, vol. 226(C), pages 494-502.
    2. Zhao, Can & Ge, Lichao & Li, Xi & Zuo, Mingjin & Xu, Chunyao & Chen, Simo & Li, Qian & Wang, Yang & Xu, Chang, 2023. "Effects of the carbonization temperature and intermediate cooling mode on the properties of coal-based activated carbon," Energy, Elsevier, vol. 273(C).
    3. Zhou, Tianhong & Ge, Lichao & Li, Qian & Yang, Long & Mai, Longhui & Huang, Jing & Wang, Yang & Xu, Chang, 2023. "Combustion and gasification properties of petroleum coke and its pyrolytic semi-coke," Energy, Elsevier, vol. 266(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moon, Hyeong-Bin & Lee, Ji-Hwan & Kim, Hyung-Tae & Lee, Jin-Wook & Lee, Byoung-Hwa & Jeon, Chung-Hwan, 2024. "Effect of high-pressure pyrolysis on syngas and char structure of petroleum coke," Energy, Elsevier, vol. 299(C).
    2. Khan Rabnawaz & Kong YuSheng, 2020. "Effects of Energy Consumption on GDP: New Evidence of 24 Countries on Their Natural Resources and Production of Electricity," Ekonomika (Economics), Sciendo, vol. 99(1), pages 26-49, June.
    3. Li, Jiuqing & Qin, Yong & Shen, Jian & Chen, Yilin, 2024. "Evolution of carbon nanostructures during coal graphitization: Insights from X-ray diffraction and high-resolution transmission electron microscopy," Energy, Elsevier, vol. 290(C).
    4. Zhou, Guangzhao & Guo, Zanquan & Sun, Simin & Jin, Qingsheng, 2023. "A CNN-BiGRU-AM neural network for AI applications in shale oil production prediction," Applied Energy, Elsevier, vol. 344(C).
    5. Yu, Xin & Yu, Dunxi & Liu, Fangqi & Han, Jingkun & Wu, Jianqun & Xu, Minghou, 2022. "Synergistic effects, gas evolution and ash interaction during isothermal steam co-gasification of biomass with high-sulfur petroleum coke," Energy, Elsevier, vol. 240(C).
    6. Zhao, Can & Ge, Lichao & Zuo, Mingjin & Mai, Longhui & Chen, Simo & Li, Xiaolong & Li, Qian & Wang, Yang & Xu, Chang, 2023. "Study on the mechanical strength and iodine adsorption behavior of coal-based activated carbon based on orthogonal experiments," Energy, Elsevier, vol. 282(C).
    7. Du, Xin & Li, Yun, 2019. "Experimental comparison and optimization on granular bed filters with three types of filling schemes," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    8. Kareemulla, Dudekula & Gusev, Sergey & Bhattacharya, Sankar & Mahajani, Sanjay M., 2024. "Entrained-flow pyrolysis and (co-)gasification characteristics of Indian high-ash coals," Energy, Elsevier, vol. 294(C).
    9. Jie Jiang & Yongfa Diao, 2022. "The Effects of Physical-Chemical Evolution of High-Sulfur Petroleum Coke on Hg 0 Removal from Coal-Fired Flue Gas and Exploration of Its Micro-Scale Mechanism," IJERPH, MDPI, vol. 19(12), pages 1-29, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224003426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.