The Effects of Physical-Chemical Evolution of High-Sulfur Petroleum Coke on Hg 0 Removal from Coal-Fired Flue Gas and Exploration of Its Micro-Scale Mechanism
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Marta Marczak-Grzesik & Stanisław Budzyń & Barbara Tora & Szymon Szufa & Krzysztof Kogut & Piotr Burmistrz, 2021. "Low-Cost Organic Adsorbents for Elemental Mercury Removal from Lignite Flue Gas," Energies, MDPI, vol. 14(8), pages 1-15, April.
- Shan, Yuli & Guan, Dabo & Meng, Jing & Liu, Zhu & Schroeder, Heike & Liu, Jianghua & Mi, Zhifu, 2018. "Rapid growth of petroleum coke consumption and its related emissions in China," Applied Energy, Elsevier, vol. 226(C), pages 494-502.
- Wang, Lulu & Feng, Xuan & Shen, Laihong & Jiang, Shouxi & Gu, Haiming, 2019. "Carbon and sulfur conversion of petroleum coke in the chemical looping gasification process," Energy, Elsevier, vol. 179(C), pages 1205-1216.
- Chen, Wei & Gong, Meng & Li, Kaixu & Xia, Mingwei & Chen, Zhiqun & Xiao, Haoyu & Fang, Yang & Chen, Yingquan & Yang, Haiping & Chen, Hanping, 2020. "Insight into KOH activation mechanism during biomass pyrolysis: Chemical reactions between O-containing groups and KOH," Applied Energy, Elsevier, vol. 278(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Khan Rabnawaz & Kong YuSheng, 2020. "Effects of Energy Consumption on GDP: New Evidence of 24 Countries on Their Natural Resources and Production of Electricity," Ekonomika (Economics), Sciendo, vol. 99(1), pages 26-49, June.
- Kuo-Hsiung Lin & Jiun-Horng Tsai & Zhi-Wei Chou & Hung-Lung Chiang, 2021. "Product Characteristics of Sludge Pyrolysis and Adsorption Performance of Metals by Char," Sustainability, MDPI, vol. 13(21), pages 1-16, November.
- Feng, Hongcui & Zhou, Tianhong & Ge, Lichao & Li, Qian & Zhao, Chan & Huang, Jing & Wang, Yang, 2024. "Study on the preparation of high value-added activated carbon from petroleum coke: Comparison between one- and two-step methods for carbonization and activation," Energy, Elsevier, vol. 292(C).
- Zhou, Guangzhao & Guo, Zanquan & Sun, Simin & Jin, Qingsheng, 2023. "A CNN-BiGRU-AM neural network for AI applications in shale oil production prediction," Applied Energy, Elsevier, vol. 344(C).
- Yang, Jie & Ma, Liping & Yang, Jing & Liu, Hongpan & Liu, Shengyu & Yang, Yingchun & Mu, Liusen & Wei, Yi & Ao, Ran & Guo, Zhiying & Dai, Quxiu & Wang, Huiming, 2019. "Thermodynamic and kinetic analysis of CuO-CaSO4 oxygen carrier in chemical looping gasification," Energy, Elsevier, vol. 188(C).
- Oleg Kucher & Taras Hutsol & Szymon Glowacki & Iryna Andreitseva & Anatolii Dibrova & Andrii Muzychenko & Anna Szeląg-Sikora & Agnieszka Szparaga & Sławomir Kocira, 2022. "Energy Potential of Biogas Production in Ukraine," Energies, MDPI, vol. 15(5), pages 1-22, February.
- Bryan Díaz & Alicia Sommer-Márquez & Paola E. Ordoñez & Ernesto Bastardo-González & Marvin Ricaurte & Carlos Navas-Cárdenas, 2024. "Synthesis Methods, Properties, and Modifications of Biochar-Based Materials for Wastewater Treatment: A Review," Resources, MDPI, vol. 13(1), pages 1-33, January.
- Li, Gang & Lv, Xuewei & Ding, Chengyi & Zhou, Xuangeng & Zhong, Dapeng & Qiu, Guibao, 2020. "Non-isothermal carbothermic reduction kinetics of calcium ferrite and hematite as oxygen carriers for chemical looping gasification applications," Applied Energy, Elsevier, vol. 262(C).
- Yu, Xin & Yu, Dunxi & Liu, Fangqi & Han, Jingkun & Wu, Jianqun & Xu, Minghou, 2022. "Synergistic effects, gas evolution and ash interaction during isothermal steam co-gasification of biomass with high-sulfur petroleum coke," Energy, Elsevier, vol. 240(C).
- Gao, Zhuwei & Li, Chengxin & Qi, Xinyu & Wei, Yaodong & Liu, Zhongxin, 2022. "Flow analysis on carbonaceous deposition of heavy oil droplets and catalyst particles for coking formation process," Energy, Elsevier, vol. 260(C).
- Patel, Himanshu & Mohanty, Amar & Misra, Manjusri, 2024. "Post-combustion CO2 capture using biomass based activated porous carbon: Latest advances in synthesis protocol and economics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
- Li, Zhenwei & Xu, Hongpeng & Yang, Wenming & Wu, Shaohua, 2021. "Numerical study on the effective utilization of high sulfur petroleum coke for syngas production via chemical looping gasification," Energy, Elsevier, vol. 235(C).
- Edyta Wrzesińska-Jędrusiak & Michał Czarnecki & Paweł Kazimierski & Paulina Bandrów & Szymon Szufa, 2023. "The Circular Economy in the Management of Waste from Leather Processing," Energies, MDPI, vol. 16(1), pages 1-16, January.
- Jerzy Gorecki & Mariusz Macherzynski & Jacek Chmielowiec & Karel Borovec & Mateusz Wałeka & Yinyou Deng & Janusz Sarbinowski & Grzegorz Pasciak, 2022. "The Methods and Stands for Testing Fixed Sorbent and Sorbent Polymer Composite Materials for the Removal of Mercury from Flue Gases," Energies, MDPI, vol. 15(23), pages 1-18, November.
- Wang, Kun & An, Zewen & Wang, Fengyin & Liang, Wenzheng & Wang, Cuiping & Guo, Qingjie & Liu, Yongzhuo & Yue, Guangxi, 2021. "Effect of ash on the performance of iron-based oxygen carrier in the chemical looping gasification of municipal sludge," Energy, Elsevier, vol. 231(C).
- Du, Xin & Li, Yun, 2019. "Experimental comparison and optimization on granular bed filters with three types of filling schemes," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Jianping Yang & Hong Xu & Fanyue Meng & Qingjie Guo & Tao He & Zequn Yang & Wenqi Qu & Hailong Li, 2022. "A Molten-Salt Pyrolysis Synthesis Strategy toward Sulfur-Functionalized Carbon for Elemental Mercury Removal from Coal-Combustion Flue Gas," Energies, MDPI, vol. 15(5), pages 1-15, March.
- Hu, Mian & Ye, Zhiheng & Zhang, Qi & Xue, Qiping & Li, Zhibin & Wang, Junliang & Pan, Zhiyan, 2022. "Towards understanding the chemical reactions between KOH and oxygen-containing groups during KOH-catalyzed pyrolysis of biomass," Energy, Elsevier, vol. 245(C).
- Wang, Yurou & Guo, Wenjuan & Chen, Wei & Xu, Gongxun & Zhu, Guoqiang & Xie, Geliang & Xu, Lujiang & Dong, Chengyu & Gao, Shuai & Chen, Yingquan & Yang, Haiping & Chen, Hanping & Fang, Zhen, 2024. "Co-production of porous N-doped biochar and hydrogen-rich gas production from simultaneous pyrolysis-activation-nitrogen doping of biomass: Synergistic mechanism of KOH and NH3," Renewable Energy, Elsevier, vol. 229(C).
- Dmytro Zhuravel & Kyrylo Samoichuk & Serhii Petrychenko & Andrii Bondar & Taras Hutsol & Maciej Kuboń & Marcin Niemiec & Lyudmyla Mykhailova & Zofia Gródek-Szostak & Dmytro Sorokin, 2022. "Modeling of Diesel Engine Fuel Systems Reliability When Operating on Biofuels," Energies, MDPI, vol. 15(5), pages 1-16, February.
More about this item
Keywords
high-sulfur petroleum coke; Hg 0 removal; pore structure; exposure of inherent S; controllable pyrolysis; chemical-mechanical activation; ReaxFF and DFT theory;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:12:p:7082-:d:834987. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.