IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics0360544223018443.html
   My bibliography  Save this article

Study on the mechanical strength and iodine adsorption behavior of coal-based activated carbon based on orthogonal experiments

Author

Listed:
  • Zhao, Can
  • Ge, Lichao
  • Zuo, Mingjin
  • Mai, Longhui
  • Chen, Simo
  • Li, Xiaolong
  • Li, Qian
  • Wang, Yang
  • Xu, Chang

Abstract

To prepare coal-based activated carbon with high mechanical strength and adsorption performance for the removal of iodine from wastewater, the effects of carbonization temperature, heating rate, activation time and activator on the mechanical strength of activated carbon were studied; the optimal production conditions were determined by comprehensively considering the specific surface area, iodine value, compressive strength and wear resistance based on previous studies. Iodine adsorption kinetics and equilibrium adsorption experiments were carried out on activated carbon prepared under the optimum conditions. The results showed that the increase in mechanical strength was caused by the release of volatile matter and secondary reactions, which formed the carbon skeleton, while the decrease in mechanical strength was due to the intervention of the activator, which destroyed the carbon skeleton. The adsorption kinetics showed that a pseudo-second order kinetic model was more suitable for the adsorption behavior of iodine on activated carbon. The equilibrium adsorption experiment results showed that iodine was evenly adsorbed on the surface of activated carbon, and with increasing temperature, the affinity of the active sites of activated carbon to iodine also increased.

Suggested Citation

  • Zhao, Can & Ge, Lichao & Zuo, Mingjin & Mai, Longhui & Chen, Simo & Li, Xiaolong & Li, Qian & Wang, Yang & Xu, Chang, 2023. "Study on the mechanical strength and iodine adsorption behavior of coal-based activated carbon based on orthogonal experiments," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223018443
    DOI: 10.1016/j.energy.2023.128450
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223018443
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128450?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Can & Ge, Lichao & Li, Xi & Zuo, Mingjin & Xu, Chunyao & Chen, Simo & Li, Qian & Wang, Yang & Xu, Chang, 2023. "Effects of the carbonization temperature and intermediate cooling mode on the properties of coal-based activated carbon," Energy, Elsevier, vol. 273(C).
    2. Ge, Lichao & Zhao, Can & Chen, Simo & Li, Qian & Zhou, Tianhong & Jiang, Han & Li, Xi & Wang, Yang & Xu, Chang, 2022. "An analysis of the carbonization process and volatile-release characteristics of coal-based activated carbon," Energy, Elsevier, vol. 257(C).
    3. Ge, Lichao & Zhao, Can & Zhou, Tianhong & Chen, Simo & Li, Qian & Wang, Xuguang & Shen, Dong & Wang, Yang & Xu, Chang, 2023. "An analysis of the carbonization process of coal-based activated carbon at different heating rates," Energy, Elsevier, vol. 267(C).
    4. Zhao, Can & Ge, Lichao & Mai, Longhui & Chen, Simo & Li, Qian & Yao, Lei & Li, Dongyang & Wang, Yang & Xu, Chang, 2023. "Preparation and performance of coal-based activated carbon based on an orthogonal experimental study," Energy, Elsevier, vol. 274(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Can & Ge, Lichao & Mai, Longhui & Chen, Simo & Li, Qian & Yao, Lei & Li, Dongyang & Wang, Yang & Xu, Chang, 2023. "Preparation and performance of coal-based activated carbon based on an orthogonal experimental study," Energy, Elsevier, vol. 274(C).
    2. Zhao, Can & Ge, Lichao & Li, Xi & Zuo, Mingjin & Xu, Chunyao & Chen, Simo & Li, Qian & Wang, Yang & Xu, Chang, 2023. "Effects of the carbonization temperature and intermediate cooling mode on the properties of coal-based activated carbon," Energy, Elsevier, vol. 273(C).
    3. Feng, Hongcui & Zhou, Tianhong & Ge, Lichao & Li, Qian & Zhao, Chan & Huang, Jing & Wang, Yang, 2024. "Study on the preparation of high value-added activated carbon from petroleum coke: Comparison between one- and two-step methods for carbonization and activation," Energy, Elsevier, vol. 292(C).
    4. Zhou, Tianhong & Ge, Lichao & Li, Qian & Yang, Long & Mai, Longhui & Huang, Jing & Wang, Yang & Xu, Chang, 2023. "Combustion and gasification properties of petroleum coke and its pyrolytic semi-coke," Energy, Elsevier, vol. 266(C).
    5. Ge, Lichao & Zhao, Can & Zhou, Tianhong & Chen, Simo & Li, Qian & Wang, Xuguang & Shen, Dong & Wang, Yang & Xu, Chang, 2023. "An analysis of the carbonization process of coal-based activated carbon at different heating rates," Energy, Elsevier, vol. 267(C).
    6. Niu, Jian & Miao, Jiawen & Zhang, Huirong & Guo, Yanxia & Li, Linbo & Cheng, Fangqin, 2023. "Focusing on the impact of inherent minerals in coal on activated carbon production and its performance: The role of trace sodium on SO2 and/or NO removal," Energy, Elsevier, vol. 263(PB).
    7. Niu, Jian & Zhang, Huirong & Xu, Wenzhen & Guo, Yanxia & Li, Linbo & Cheng, Fangqin, 2024. "Utilization of inherent minerals in coal for high-performance activated carbon production: The mechanism of deSO2 and/or deNOx enhanced by in situ transformed calcium sulfide (CaS)," Energy, Elsevier, vol. 289(C).
    8. Ge, Lichao & Zhao, Can & Zuo, Mingjin & Du, Yuying & Yao, Lei & Li, Dongyang & Chu, Huaqiang & Wang, Yang & Xu, Chang, 2023. "Effect of Fe on the pyrolysis products of lignin, cellulose and hemicellulose, and the formation of carbon nanotubes," Renewable Energy, Elsevier, vol. 211(C), pages 13-20.
    9. Sun, Zhe & Zhang, Miao & Yin, Hui & Hu, Qi & Krishnan, Sarathkumar & Huang, Zhanhua & Qi, Houjuan & Wang, Xiaolei, 2023. "Tailoring hierarchically porous structure of biomass-derived carbon for high-performance supercapacitors," Renewable Energy, Elsevier, vol. 219(P1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223018443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.