IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v226y2018icp494-502.html
   My bibliography  Save this article

Rapid growth of petroleum coke consumption and its related emissions in China

Author

Listed:
  • Shan, Yuli
  • Guan, Dabo
  • Meng, Jing
  • Liu, Zhu
  • Schroeder, Heike
  • Liu, Jianghua
  • Mi, Zhifu

Abstract

Petroleum coke, a non-environmentally friendly energy source, is gradually replacing other power fuels in China’s industrial enterprises because of its price advantage. Petroleum coke has high emission factors and thus emits more greenhouse gases (GHGs) and air pollutants than even raw coal. This study first examines the rapid growth of petroleum coke consumption in China since 2010 by industry sector and region and then estimates the petroleum coke-related emissions. We conclude that the total consumption of petroleum coke increased by 18.9% from 2010 to 2016 and that the industry final consumption for burning in boilers increased dramatically (by 158.2%). Petroleum coke-related CO2 emissions reached 28 million tonnes in 2016, whereas CH4 and N2O emissions totaled 870 and 143 tonnes, respectively. The increased use of petroleum coke will increase the urgency for the development of climate change mitigation and emissions reduction measures in China. We propose several possible policy suggestions for petroleum coke management and emissions control, such as strongly restricting the production and import of high-sulphur petroleum coke, as well as burning petroleum coke to provide power; more power plants and industrial kiln stoves/boilers should be equipped with efficient decontamination systems; the development of advanced industrial processes and the clean utilization of petroleum coke should be encouraged.

Suggested Citation

  • Shan, Yuli & Guan, Dabo & Meng, Jing & Liu, Zhu & Schroeder, Heike & Liu, Jianghua & Mi, Zhifu, 2018. "Rapid growth of petroleum coke consumption and its related emissions in China," Applied Energy, Elsevier, vol. 226(C), pages 494-502.
  • Handle: RePEc:eee:appene:v:226:y:2018:i:c:p:494-502
    DOI: 10.1016/j.apenergy.2018.06.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918308845
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.06.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ke-Xi Pan & Han-Xiong Zhu & Zheng Chang & Kuan-Hong Wu & Yu-Li Shan & Zhi-Xing Liu, 2013. "Estimation of Coal-Related Co2 Emissions: The Case of China," Energy & Environment, , vol. 24(7-8), pages 1309-1321, December.
    2. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    3. He, Kebin & Huo, Hong & Zhang, Qiang & He, Dongquan & An, Feng & Wang, Michael & Walsh, Michael P., 2005. "Oil consumption and CO2 emissions in China's road transport: current status, future trends, and policy implications," Energy Policy, Elsevier, vol. 33(12), pages 1499-1507, August.
    4. Shan, Yuli & Liu, Jianghua & Liu, Zhu & Xu, Xinwanghao & Shao, Shuai & Wang, Peng & Guan, Dabo, 2016. "New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors," Applied Energy, Elsevier, vol. 184(C), pages 742-750.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Jiang & Yongfa Diao, 2022. "The Effects of Physical-Chemical Evolution of High-Sulfur Petroleum Coke on Hg 0 Removal from Coal-Fired Flue Gas and Exploration of Its Micro-Scale Mechanism," IJERPH, MDPI, vol. 19(12), pages 1-29, June.
    2. Zhou, Guangzhao & Guo, Zanquan & Sun, Simin & Jin, Qingsheng, 2023. "A CNN-BiGRU-AM neural network for AI applications in shale oil production prediction," Applied Energy, Elsevier, vol. 344(C).
    3. Khan Rabnawaz & Kong YuSheng, 2020. "Effects of Energy Consumption on GDP: New Evidence of 24 Countries on Their Natural Resources and Production of Electricity," Ekonomika (Economics), Sciendo, vol. 99(1), pages 26-49, June.
    4. Du, Xin & Li, Yun, 2019. "Experimental comparison and optimization on granular bed filters with three types of filling schemes," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Yu, Xin & Yu, Dunxi & Liu, Fangqi & Han, Jingkun & Wu, Jianqun & Xu, Minghou, 2022. "Synergistic effects, gas evolution and ash interaction during isothermal steam co-gasification of biomass with high-sulfur petroleum coke," Energy, Elsevier, vol. 240(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Huijuan & Wang, Daoping & Qi, Yu & Shao, Shuai & Zhou, Ya & Shan, Yuli, 2021. "The governance-production nexus of eco-efficiency in Chinese resource-based cities: A two-stage network DEA approach," Energy Economics, Elsevier, vol. 101(C).
    2. Xianchun Tan & Yuan Zeng & Baihe Gu & Yi Wang & Baoguang Xu, 2018. "Scenario Analysis of Urban Road Transportation Energy Demand and GHG Emissions in China—A Case Study for Chongqing," Sustainability, MDPI, vol. 10(6), pages 1-32, June.
    3. Hui Wen & Yi Li & Zirong Li & Xiaoxue Cai & Fengxia Wang, 2022. "Spatial Differentiation of Carbon Budgets and Carbon Balance Zoning in China Based on the Land Use Perspective," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    4. Xiao, Huijuan & Duan, Zhiyuan & Zhou, Ya & Zhang, Ning & Shan, Yuli & Lin, Xiyan & Liu, Guosheng, 2019. "CO2 emission patterns in shrinking and growing cities: A case study of Northeast China and the Yangtze River Delta," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Duan, Cuncun & Chen, Bin & Feng, Kuishuang & Liu, Zhu & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2018. "Interregional carbon flows of China," Applied Energy, Elsevier, vol. 227(C), pages 342-352.
    6. Chen, Qianli & Cai, Bofeng & Dhakal, Shobhakar & Pei, Sha & Liu, Chunlan & Shi, Xiaoping & Hu, Fangfang, 2017. "CO2 emission data for Chinese cities," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 198-208.
    7. Li Wang & Jie Pei & Jing Geng & Zheng Niu, 2019. "Tracking the Spatial–Temporal Evolution of Carbon Emissions in China from 1999 to 2015: A Land Use Perspective," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
    8. Cui, Can & Shan, Yuli & Liu, Jianghua & Yu, Xiang & Wang, Hongtao & Wang, Zhen, 2019. "CO2 emissions and their spatial patterns of Xinjiang cities in China," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    9. Jiachen Li & Xue Li & Chiyin Chen, 2021. "The CO 2 Emission Efficiency of China’s Hotel Industry under the Double Carbon Objectives and Homestay Growth," Energies, MDPI, vol. 14(24), pages 1-20, December.
    10. Jiancheng Qin & Lei Gao & Weihu Tu & Jing He & Jingzhe Tang & Shuying Ma & Xiaoyang Zhao & Xingzhe Zhu & Karthikeyan Brindha & Hui Tao, 2022. "Decomposition and Decoupling Analysis of Carbon Emissions in Xinjiang Energy Base, China," Energies, MDPI, vol. 15(15), pages 1-18, July.
    11. Bingjie Xu & Ruoyu Zhong & Yifeng Liu, 2019. "Comparison of CO 2 emissions reduction efficiency of household fuel consumption in China," Sustainability, MDPI, vol. 11(4), pages 1-13, February.
    12. Wen, Wen & Feng, Cuiyang & Zhou, Hao & Zhang, Li & Wu, Xiaohui & Qi, Jianchuan & Yang, Xuechun & Liang, Yuhan, 2021. "Critical provincial transmission sectors for carbon dioxide emissions in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    13. Li, Chong-Mao & Cui, Tao & Nie, Rui & Lin, Han & Shan, Yuli, 2019. "Does diversification help improve the performance of coal companies? Evidence from China's listed coal companies," Resources Policy, Elsevier, vol. 61(C), pages 88-98.
    14. Zeng, Yuan & Tan, Xianchun & Gu, Baihe & Wang, Yi & Xu, Baoguang, 2016. "Greenhouse gas emissions of motor vehicles in Chinese cities and the implication for China’s mitigation targets," Applied Energy, Elsevier, vol. 184(C), pages 1016-1025.
    15. Haoyue Tang & Ping Jiang & Jia He & Weichun Ma, 2020. "Synergies of Cutting Air Pollutants and CO 2 Emissions by the End-of-Pipe Treatment Facilities in a Typical Chinese Integrated Steel Plant," Sustainability, MDPI, vol. 12(12), pages 1-23, June.
    16. Zhang, Kun & Xue, Mei-Mei & Feng, Kuishuang & Liang, Qiao-Mei, 2019. "The economic effects of carbon tax on China’s provinces," Journal of Policy Modeling, Elsevier, vol. 41(4), pages 784-802.
    17. Feng, Tong & Du, Huibin & Zhang, Zengkai & Mi, Zhifu & Guan, Dabo & Zuo, Jian, 2020. "Carbon transfer within China: Insights from production fragmentation," Energy Economics, Elsevier, vol. 86(C).
    18. Yang, Jie & Huang, Yijing & Takeuchi, Kenji, 2022. "Does drought increase carbon emissions? Evidence from Southwestern China," Ecological Economics, Elsevier, vol. 201(C).
    19. Li, Li & Shan, Yuli & Lei, Yalin & Wu, Sanmang & Yu, Xiang & Lin, Xiyan & Chen, Yupei, 2019. "Decoupling of economic growth and emissions in China’s cities: A case study of the Central Plains urban agglomeration," Applied Energy, Elsevier, vol. 244(C), pages 36-45.
    20. Junbo Wang & Liu Chen & Lu Chen & Xiaohui Zhao & Minxi Wang & Yiyi Ju & Li Xin, 2019. "City-Level Features of Energy Footprints and Carbon Dioxide Emissions in Sichuan Province of China," Energies, MDPI, vol. 12(10), pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:226:y:2018:i:c:p:494-502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.