IDEAS home Printed from https://ideas.repec.org/a/vrs/ekonom/v99y2020i1p26-49n2.html
   My bibliography  Save this article

Effects of Energy Consumption on GDP: New Evidence of 24 Countries on Their Natural Resources and Production of Electricity

Author

Listed:
  • Khan Rabnawaz

    (School of Finance and Economics, Jiangsu UniversityPeople's Republic ofChina)

  • Kong YuSheng

    (School of Finance and Economics, Jiangsu UniversityPeople's Republic ofChina)

Abstract

Because of rapid economic expansion, China, the USA, and India have become the largest energy producers and sources of CO2 emissions in the world. They burned over 45% of global fuels in 2016. Meanwhile, the developing strategies of 24 polluted states to decrease fossil energy consumption without additional economic output. This paper explores the effect of world top polluted countries’ CO2 emission, their GDP and production of electricity by potential indicators and identifies the basic factors that contribute to changes in an environment where petroleum, natural gas, coal, nuclear, biomass, and other renewable energy and hydroelectric sources are examined with GDP per capita. We estimate our data for the period from 1968 to 2017 and use the GLM model. The results show that more production of electricity is causing abnormal CO2 emissions. The Granger causality test shows that there is a unidirectional relationship between energy consumption and economic advancement. Also, there is a short-run bidirectional causality that exists among the energy indicators. We find a unilateral causality between energy consumption and economic growth. Therefore, the consumption of energy might be conductive of 24 (polluted) countries and better economic development; the consumption of energy may be failsafe and guaranteed, while we should limit the resources of countries.

Suggested Citation

  • Khan Rabnawaz & Kong YuSheng, 2020. "Effects of Energy Consumption on GDP: New Evidence of 24 Countries on Their Natural Resources and Production of Electricity," Ekonomika (Economics), Sciendo, vol. 99(1), pages 26-49, June.
  • Handle: RePEc:vrs:ekonom:v:99:y:2020:i:1:p:26-49:n:2
    DOI: 10.15388/ekon.2020.1.2
    as

    Download full text from publisher

    File URL: https://doi.org/10.15388/ekon.2020.1.2
    Download Restriction: no

    File URL: https://libkey.io/10.15388/ekon.2020.1.2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xu, Guangyue & Schwarz, Peter & Yang, Hualiu, 2019. "Determining China's CO2 emissions peak with a dynamic nonlinear artificial neural network approach and scenario analysis," Energy Policy, Elsevier, vol. 128(C), pages 752-762.
    2. Shan, Yuli & Guan, Dabo & Meng, Jing & Liu, Zhu & Schroeder, Heike & Liu, Jianghua & Mi, Zhifu, 2018. "Rapid growth of petroleum coke consumption and its related emissions in China," Applied Energy, Elsevier, vol. 226(C), pages 494-502.
    3. Valadkhani, Abbas & Nguyen, Jeremy & Bowden, Mark, 2019. "Pathways to reduce CO2 emissions as countries proceed through stages of economic development," Energy Policy, Elsevier, vol. 129(C), pages 268-278.
    4. Karney, Daniel H., 2019. "Electricity market deregulation and environmental regulation: Evidence from U.S. nuclear power," Energy Economics, Elsevier, vol. 84(C).
    5. Menyah, Kojo & Wolde-Rufael, Yemane, 2010. "CO2 emissions, nuclear energy, renewable energy and economic growth in the US," Energy Policy, Elsevier, vol. 38(6), pages 2911-2915, June.
    6. Wolde-Rufael, Yemane & Menyah, Kojo, 2010. "Nuclear energy consumption and economic growth in nine developed countries," Energy Economics, Elsevier, vol. 32(3), pages 550-556, May.
    7. Solaymani, Saeed, 2019. "CO2 emissions patterns in 7 top carbon emitter economies: The case of transport sector," Energy, Elsevier, vol. 168(C), pages 989-1001.
    8. Uribe, Jorge M. & Guillen, Montserrat & Mosquera-López, Stephania, 2018. "Uncovering the nonlinear predictive causality between natural gas and electricity prices," Energy Economics, Elsevier, vol. 74(C), pages 904-916.
    9. Natalya Ketenci, 2018. "The environmental Kuznets curve in the case of Russia," Russian Journal of Economics, ARPHA Platform, vol. 4(3), pages 249-265, October.
    10. Xu, Bin & Lin, Boqiang, 2019. "Can expanding natural gas consumption reduce China's CO2 emissions?," Energy Economics, Elsevier, vol. 81(C), pages 393-407.
    11. Mezghani, Imed & Ben Haddad, Hedi, 2017. "Energy consumption and economic growth: An empirical study of the electricity consumption in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 145-156.
    12. Pao, Hsiao-Tien & Tsai, Chung-Ming, 2011. "Multivariate Granger causality between CO2 emissions, energy consumption, FDI (foreign direct investment) and GDP (gross domestic product): Evidence from a panel of BRIC (Brazil, Russian Federation, I," Energy, Elsevier, vol. 36(1), pages 685-693.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhaoming Bi & Renyu Guo & Rabnawaz Khan, 2024. "Renewable Adoption, Energy Reliance, and CO 2 Emissions: A Comparison of Developed and Developing Economies," Energies, MDPI, vol. 17(13), pages 1-28, June.
    2. Yuvensius Sri Susilo & Matthew Kartawinata & Jonathan Ersten Herawan, 2024. "The Effect of Energy Consumption Towards Economic Growth: The Case of 11 Asian Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 14(3), pages 600-608, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gideon Kwaku Minua Ampofo & Jinhua Cheng & Edwin Twum Ayimadu & Daniel Akwasi Asante, 2021. "Investigating the Asymmetric Effect of Economic Growth on Environmental Quality in the Next 11 Countries," Energies, MDPI, vol. 14(2), pages 1-29, January.
    2. Radovanović, Mirjana & Filipović, Sanja & Pavlović, Dejan, 2017. "Energy security measurement – A sustainable approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1020-1032.
    3. Al-mulali, Usama, 2011. "Oil consumption, CO2 emission and economic growth in MENA countries," Energy, Elsevier, vol. 36(10), pages 6165-6171.
    4. Omri, Anis, 2014. "An international literature survey on energy-economic growth nexus: Evidence from country-specific studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 951-959.
    5. Saidi Kais & Ben Mbarek Mounir, 2017. "Causal interactions between environmental degradation, renewable energy, nuclear energy and real GDP: a dynamic panel data approach," Environment Systems and Decisions, Springer, vol. 37(1), pages 51-67, March.
    6. Mounir Ben Mbarek & Racha Khairallah & Rochdi Feki, 2015. "Causality relationships between renewable energy, nuclear energy and economic growth in France," Environment Systems and Decisions, Springer, vol. 35(1), pages 133-142, March.
    7. Shakoor Ahmed & Khorshed Alam & Afzalur Rashid & Jeff Gow, 2020. "Militarisation, Energy Consumption, CO2 Emissions and Economic Growth in Myanmar," Defence and Peace Economics, Taylor & Francis Journals, vol. 31(6), pages 615-641, August.
    8. Lee, Chien-Chiang & Chiu, Yi-Bin, 2011. "Oil prices, nuclear energy consumption, and economic growth: New evidence using a heterogeneous panel analysis," Energy Policy, Elsevier, vol. 39(4), pages 2111-2120, April.
    9. Shahzad, Syed Jawad Hussain & Kumar, Ronald Ravinesh & Zakaria, Muhammad & Hurr, Maryam, 2017. "Carbon emission, energy consumption, trade openness and financial development in Pakistan: A revisit," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 185-192.
    10. Jaforullah, Mohammad & King, Alan, 2015. "Does the use of renewable energy sources mitigate CO2 emissions? A reassessment of the US evidence," Energy Economics, Elsevier, vol. 49(C), pages 711-717.
    11. Lee, Chien-Chiang & Chiu, Yi-Bin, 2011. "Nuclear energy consumption, oil prices, and economic growth: Evidence from highly industrialized countries," Energy Economics, Elsevier, vol. 33(2), pages 236-248, March.
    12. Man-Keun Kim & Kangil Lee, 2015. "Dynamic Interactions between Carbon and Energy Prices in the U.S. Regional Greenhouse Gas Initiative," International Journal of Energy Economics and Policy, Econjournals, vol. 5(2), pages 494-501.
    13. Luqman, Muhammad & Ahmad, Najid & Bakhsh, Khuda, 2019. "Nuclear energy, renewable energy and economic growth in Pakistan: Evidence from non-linear autoregressive distributed lag model," Renewable Energy, Elsevier, vol. 139(C), pages 1299-1309.
    14. Matheus Koengkan, 2018. "The decline of environmental degradation by renewable energy consumption in the MERCOSUR countries: an approach with ARDL modeling," Environment Systems and Decisions, Springer, vol. 38(3), pages 415-425, September.
    15. Lau, Lin-Sea & Choong, Chee-Keong & Ng, Cheong-Fatt & Liew, Feng-Mei & Ching, Suet-Ling, 2019. "Is nuclear energy clean? Revisit of Environmental Kuznets Curve hypothesis in OECD countries," Economic Modelling, Elsevier, vol. 77(C), pages 12-20.
    16. Ravetti, Chiara & Cambini, Carlo, 2021. "Energy Use Beyond GDP: A Dynamic Panel Analysis with Different Development Indicators," Working Papers 10-2021, Copenhagen Business School, Department of Economics.
    17. Priscilla Massa-Sánchez & Luis Quintana-Romero & Ronny Correa-Quezada & María de la Cruz del Río-Rama, 2020. "Empirical Evidence in Ecuador between Economic Growth and Environmental Deterioration," Sustainability, MDPI, vol. 12(3), pages 1-20, January.
    18. Tiba, Sofien & Omri, Anis, 2017. "Literature survey on the relationships between energy, environment and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1129-1146.
    19. Omri, Anis & Ben Mabrouk, Nejah & Sassi-Tmar, Amel, 2015. "Modeling the causal linkages between nuclear energy, renewable energy and economic growth in developed and developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1012-1022.
    20. Nazlioglu, Saban & Lebe, Fuat & Kayhan, Selim, 2011. "Nuclear energy consumption and economic growth in OECD countries: Cross-sectionally dependent heterogeneous panel causality analysis," Energy Policy, Elsevier, vol. 39(10), pages 6615-6621, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:ekonom:v:99:y:2020:i:1:p:26-49:n:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.