IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v292y2024ics0360544224002603.html
   My bibliography  Save this article

Failure characteristics of microwave heat-treated stressed sandstone: Implications for deep rock breakage using TBM cutting

Author

Listed:
  • Tao, Ming
  • Yang, Zheng
  • Zhao, Yan
  • Wu, Xingyu
  • Wu, Chengqing

Abstract

Microwave-assisted rock fragmentation is a clean, safe, and economically viable method in deep energy development. The innovation of this study lies in the first investigation of rock breaking under initial stress using microwave-assisted tunnel boring machines (TBM) cutters. To overcome the problem of inaccurate monitoring of crack information in laboratory tests, a new concept was adopted to simulate the failure process of microwave-irradiated sandstone caused by a TBM cutter. The microscopic parameters of the model were calibrated based on the laboratory test results. The results showed that an increase in the microwave power led to an increase in the damage level of the sandstone. The dominant failure modes at a low initial stress were vertical and diagonal cracks. At a high initial stress, the failure modes were a combination of vertical, diagonal, and subhorizontal cracks. The critical range of the initial stress to inhibit crack expansion was 10–20 MPa. The rock-breaking efficiency was negatively correlated with initial stress and positively correlated with microwave power. The assisted rock-breaking effect of microwave power was evident at 30 MPa. These results serve as a guide for selecting the appropriate microwave power for rock-breaking under initial stresses.

Suggested Citation

  • Tao, Ming & Yang, Zheng & Zhao, Yan & Wu, Xingyu & Wu, Chengqing, 2024. "Failure characteristics of microwave heat-treated stressed sandstone: Implications for deep rock breakage using TBM cutting," Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224002603
    DOI: 10.1016/j.energy.2024.130489
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224002603
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130489?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Numbi, B.P. & Zhang, J. & Xia, X., 2014. "Optimal energy management for a jaw crushing process in deep mines," Energy, Elsevier, vol. 68(C), pages 337-348.
    2. Bhattacharya, Madhuchhanda & Basak, Tanmay, 2016. "A review on the susceptor assisted microwave processing of materials," Energy, Elsevier, vol. 97(C), pages 306-338.
    3. Du, Xuanhong & Xue, Junhua & Shi, Yu & Cao, Chen-Rui & Shu, Chi-Min & Li, Kehan & Ma, Qian & Zhan, Keliang & Chen, Zhiheng & Wang, Shulou, 2023. "Triaxial mechanical behaviour and energy conversion characteristics of deep coal bodies under confining pressure," Energy, Elsevier, vol. 266(C).
    4. Liu, Haizhou & Mao, Lingtao & Ju, Yang & Hild, François, 2023. "Damage evolution in coal under different loading modes using advanced digital volume correlation based on X-ray computed tomography," Energy, Elsevier, vol. 275(C).
    5. Li, He & Shi, Shiliang & Lin, Baiquan & Lu, Jiexin & Ye, Qing & Lu, Yi & Wang, Zheng & Hong, Yidu & Zhu, Xiangnan, 2019. "Effects of microwave-assisted pyrolysis on the microstructure of bituminous coals," Energy, Elsevier, vol. 187(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuxuan Zhou & Shugang Li & Yang Bai & Hang Long & Yuchu Cai & Jingfei Zhang, 2023. "Joint Characterization and Fractal Laws of Pore Structure in Low-Rank Coal," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    2. Kagiri, Charles & Wanjiru, Evan M. & Zhang, Lijun & Xia, Xiaohua, 2018. "Optimized response to electricity time-of-use tariff of a compressed natural gas fuelling station," Applied Energy, Elsevier, vol. 222(C), pages 244-256.
    3. Haijun Guo & Zhixiang Cheng & Kai Wang & Baolin Qu & Liang Yuan & Chao Xu, 2020. "Coal permeability evolution characteristics: Analysis under different loading conditions," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(2), pages 347-363, April.
    4. Witold Kawalec & Robert Król & Natalia Suchorab, 2020. "Regenerative Belt Conveyor versus Haul Truck-Based Transport: Polish Open-Pit Mines Facing Sustainable Development Challenges," Sustainability, MDPI, vol. 12(21), pages 1-15, November.
    5. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Foley, Aoife M. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Rooney, David, 2022. "Decarbonizing the ceramics industry: A systematic and critical review of policy options, developments and sociotechnical systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    6. Yongzan, Wen & Guanhua, Ni & Xinyue, Zhang & Yicheng, Zheng & Gang, Wang & Zhenyang, Wang & Qiming, Huang, 2023. "Fine characterization of pore structure of acidified anthracite based on liquid intrusion method and Micro-CT," Energy, Elsevier, vol. 263(PA).
    7. Ren, Xueyong & Shanb Ghazani, Mohammad & Zhu, Hui & Ao, Wenya & Zhang, Han & Moreside, Emma & Zhu, Jinjiao & Yang, Pu & Zhong, Na & Bi, Xiaotao, 2022. "Challenges and opportunities in microwave-assisted catalytic pyrolysis of biomass: A review," Applied Energy, Elsevier, vol. 315(C).
    8. Wanjiru, Evan M. & Sichilalu, Sam M. & Xia, Xiaohua, 2017. "Optimal control of heat pump water heater-instantaneous shower using integrated renewable-grid energy systems," Applied Energy, Elsevier, vol. 201(C), pages 332-342.
    9. Bai, Gang & Su, Jun & Zhang, Zunguo & Lan, Anchang & Zhou, Xihua & Gao, Fei & Zhou, Jianbin, 2022. "Effect of CO2 injection on CH4 desorption rate in poor permeability coal seams: An experimental study," Energy, Elsevier, vol. 238(PA).
    10. Liu, Jia & Xue, Yi & Fu, Yong & Yao, Kai & Liu, Jianqiang, 2023. "Numerical investigation on microwave-thermal recovery of shale gas based on a fully coupled electromagnetic, heat transfer, and multiphase flow model," Energy, Elsevier, vol. 263(PE).
    11. Md Said, Mohamad Syazarudin & Azni, Atiyyah Ameenah & Wan Ab Karim Ghani, Wan Azlina & Idris, Azni & Ja'afar, Mohamad Fakri Zaky & Mohd Salleh, Mohamad Amran, 2022. "Production of biochar from microwave pyrolysis of empty fruit bunch in an alumina susceptor," Energy, Elsevier, vol. 240(C).
    12. Xi, Xian & Jiang, Shuguang & Shi, Quanlin, 2023. "Study on the flow and bonding-reinforcement characteristics of composite foam slurry material used to block mine leakage," Energy, Elsevier, vol. 263(PD).
    13. Hao Wang & Xiaogang Li & Jingyi Zhu & Zhaozhong Yang & Jie Zhou & Liangping Yi, 2022. "Numerical Simulation of Oil Shale Pyrolysis under Microwave Irradiation Based on a Three-Dimensional Porous Medium Multiphysics Field Model," Energies, MDPI, vol. 15(9), pages 1-20, April.
    14. Yi Zhang & Jun Xu & Deming Wang, 2020. "Experimental Study on the Inhibition Effects of Nitrogen and Carbon Dioxide on Coal Spontaneous Combustion," Energies, MDPI, vol. 13(20), pages 1-14, October.
    15. Li, Min & Yang, Xueqin & Lu, Yi & Wang, Deming & Shi, Shiliang & Ye, Qing & Li, He & Wang, Zheng, 2023. "Thermodynamic variation law and influence mechanism of low-temperature oxidation of lignite samples with different moisture contents," Energy, Elsevier, vol. 262(PB).
    16. Suriapparao, Dadi V. & Hemanth Kumar, Tanneru & Reddy, B. Rajasekhar & Yerrayya, Attada & Srinivas, B. Abhinaya & Sivakumar, Pandian & Prakash, S. Reddy & Sankar Rao, Chinta & Sridevi, Veluru & Desing, 2022. "Role of ZSM5 catalyst and char susceptor on the synthesis of chemicals and hydrocarbons from microwave-assisted in-situ catalytic co-pyrolysis of algae and plastic wastes," Renewable Energy, Elsevier, vol. 181(C), pages 990-999.
    17. Wang, Yihan & Yang, Wei & Yang, Wenming & Luo, Liming & lyu, Jieyao, 2024. "Effect of AES anionic surfactant on the microstructure and wettability of coal," Energy, Elsevier, vol. 289(C).
    18. Dong, Maifan & Feng, Lele & Qin, Botao, 2023. "Characteristics of coal gasification with CO2 after microwave irradiation based on TGA, FTIR and DFT theory," Energy, Elsevier, vol. 267(C).
    19. Zhang, Hewei & Shen, Jian & Wang, Geoff & Li, Kexin & Fang, Xiaojie, 2023. "Experimental study on the effect of high-temperature nitrogen immersion on the nanoscale pore structure of different lithotypes of coal," Energy, Elsevier, vol. 284(C).
    20. He, Jiawei & Li, He & Yang, Wei & Lu, Jiexin & Lu, Yi & Liu, Ting & Shi, Shiliang, 2023. "Experimental study on erosion mechanism and pore structure evolution of bituminous and anthracite coal under matrix acidification and its significance to coalbed methane recovery," Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224002603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.