IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3256-d805200.html
   My bibliography  Save this article

Numerical Simulation of Oil Shale Pyrolysis under Microwave Irradiation Based on a Three-Dimensional Porous Medium Multiphysics Field Model

Author

Listed:
  • Hao Wang

    (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China)

  • Xiaogang Li

    (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China)

  • Jingyi Zhu

    (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
    College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China)

  • Zhaozhong Yang

    (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China)

  • Jie Zhou

    (Institute of Applied Electromagnetics, Sichuan University, Chengdu 610064, China)

  • Liangping Yi

    (State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China)

Abstract

The pyrolysis characteristics of oil shale during heat treatment dominate the oil production of kerogen. In this study, the pyrolysis characteristics of oil shale in a laboratory microwave apparatus were investigated based on a novel fully coupled three-dimensional electromagnetic-thermal-chemical-hydraulic model according to the experimental microwave apparatus. By simulating the electric field, temperature distribution, and kerogen decomposition within oil shale subjected to microwave irradiation, several parameters, including waveguide, position, and power, were successfully optimized. The results indicated that the non-uniform temperature distribution was consistent with the distribution of the electric field. Double microwave ports were more effective than single ports in terms of heating rate and temperature uniformity. There was an optimal location where the highest heating efficiency was obtained, which was on the left of the cavity center. When irradiation was conducted over a range of microwave powers, a higher power was suitable for achieving a rapid temperature increase, whereas a lower power was suitable to gain a high efficiency of the pyrolysis rate. Therefore, a variable power heating mode was introduced to decrease the heating time and improve the heat uniformity simultaneously during oil shale pyrolysis. Specifically, the secondary reactions of oil products should be maximally avoided by controlling the microwave power.

Suggested Citation

  • Hao Wang & Xiaogang Li & Jingyi Zhu & Zhaozhong Yang & Jie Zhou & Liangping Yi, 2022. "Numerical Simulation of Oil Shale Pyrolysis under Microwave Irradiation Based on a Three-Dimensional Porous Medium Multiphysics Field Model," Energies, MDPI, vol. 15(9), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3256-:d:805200
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3256/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3256/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fuke Dong & Zijun Feng & Dong Yang & Yangsheng Zhao & Derek Elsworth, 2018. "Permeability Evolution of Pyrolytically-Fractured Oil Shale under In Situ Conditions," Energies, MDPI, vol. 11(11), pages 1-9, November.
    2. Song, Xianzhi & Zhang, Chengkai & Shi, Yu & Li, Gensheng, 2019. "Production performance of oil shale in-situ conversion with multilateral wells," Energy, Elsevier, vol. 189(C).
    3. Jia Liu & Jianguo Wang & Chunfai Leung & Feng Gao, 2018. "A Fully Coupled Numerical Model for Microwave Heating Enhanced Shale Gas Recovery," Energies, MDPI, vol. 11(6), pages 1-28, June.
    4. Wang, Guoying & Liu, Shaowei & Yang, Dong & Fu, Mengxiong, 2022. "Numerical study on the in-situ pyrolysis process of steeply dipping oil shale deposits by injecting superheated water steam: A case study on Jimsar oil shale in Xinjiang, China," Energy, Elsevier, vol. 239(PC).
    5. Hongyuan Qi & Huayi Jiang & Yanzhen You & Juan Hu & Yulong Wang & Zhe Wu & Hongxin Qi, 2022. "Mechanism of Magnetic Nanoparticle Enhanced Microwave Pyrolysis for Oily Sludge," Energies, MDPI, vol. 15(4), pages 1-22, February.
    6. Kang, Zhiqin & Zhao, Yangsheng & Yang, Dong, 2020. "Review of oil shale in-situ conversion technology," Applied Energy, Elsevier, vol. 269(C).
    7. Li, He & Shi, Shiliang & Lin, Baiquan & Lu, Jiexin & Ye, Qing & Lu, Yi & Wang, Zheng & Hong, Yidu & Zhu, Xiangnan, 2019. "Effects of microwave-assisted pyrolysis on the microstructure of bituminous coals," Energy, Elsevier, vol. 187(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Yu & Zhang, Yulong & Song, Xianzhi & Cui, Qiliang & Lei, Zhihong & Song, Guofeng, 2023. "Injection energy utilization efficiency and production performance of oil shale in-situ exploitation," Energy, Elsevier, vol. 263(PB).
    2. Huang, HanWei & Yu, Hao & Xu, WenLong & Lyu, ChengSi & Micheal, Marembo & Xu, HengYu & Liu, He & Wu, HengAn, 2023. "A coupled thermo-hydro-mechanical-chemical model for production performance of oil shale reservoirs during in-situ conversion process," Energy, Elsevier, vol. 268(C).
    3. Hao Wang & Jianzheng Su & Jingyi Zhu & Zhaozhong Yang & Xianglong Meng & Xiaogang Li & Jie Zhou & Liangping Yi, 2022. "Numerical Simulation of Oil Shale Retorting Optimization under In Situ Microwave Heating Considering Electromagnetics, Heat Transfer, and Chemical Reactions Coupling," Energies, MDPI, vol. 15(16), pages 1-14, August.
    4. Wang, Lei & Yang, Dong & Zhang, Yuxing & Li, Wenqing & Kang, Zhiqin & Zhao, Yangsheng, 2022. "Research on the reaction mechanism and modification distance of oil shale during high-temperature water vapor pyrolysis," Energy, Elsevier, vol. 261(PB).
    5. Shangli Liu & Haifeng Gai & Peng Cheng, 2023. "Technical Scheme and Application Prospects of Oil Shale In Situ Conversion: A Review of Current Status," Energies, MDPI, vol. 16(11), pages 1-22, May.
    6. Wang, Guoying & Liu, Shaowei & Yang, Dong & Fu, Mengxiong, 2022. "Numerical study on the in-situ pyrolysis process of steeply dipping oil shale deposits by injecting superheated water steam: A case study on Jimsar oil shale in Xinjiang, China," Energy, Elsevier, vol. 239(PC).
    7. Liu, Jia & Xue, Yi & Fu, Yong & Yao, Kai & Liu, Jianqiang, 2023. "Numerical investigation on microwave-thermal recovery of shale gas based on a fully coupled electromagnetic, heat transfer, and multiphase flow model," Energy, Elsevier, vol. 263(PE).
    8. Nie, Bin, 2023. "Study on thermal decomposition of oil shale: Two-phase fluid simulation in wellbore," Energy, Elsevier, vol. 272(C).
    9. Zhan, Honglei & Yang, Qi & Qin, Fankai & Meng, Zhaohui & Chen, Ru & Miao, Xinyang & Zhao, Kun & Yue, Wenzheng, 2022. "Comprehensive preparation and multiscale characterization of kerogen in oil shale," Energy, Elsevier, vol. 252(C).
    10. Juan Jin & Jiandong Liu & Weidong Jiang & Wei Cheng & Xiaowen Zhang, 2022. "Evolution of the Anisotropic Thermal Conductivity of Oil Shale with Temperature and Its Relationship with Anisotropic Pore Structure Evolution," Energies, MDPI, vol. 15(21), pages 1-16, October.
    11. Yang, Qinchuan & Guo, Wei & Xu, Shaotao & Zhu, Chaofan, 2023. "The autothermic pyrolysis in-situ conversion process for oil shale recovery: Effect of gas injection parameters," Energy, Elsevier, vol. 283(C).
    12. Zhang, Hewei & Shen, Jian & Wang, Geoff & Li, Kexin & Fang, Xiaojie, 2023. "Experimental study on the effect of high-temperature nitrogen immersion on the nanoscale pore structure of different lithotypes of coal," Energy, Elsevier, vol. 284(C).
    13. Juan Jin & Weidong Jiang & Jiandong Liu & Junfeng Shi & Xiaowen Zhang & Wei Cheng & Ziniu Yu & Weixi Chen & Tingfu Ye, 2023. "Numerical Analysis of In Situ Conversion Process of Oil Shale Formation Based on Thermo-Hydro-Chemical Coupled Modelling," Energies, MDPI, vol. 16(5), pages 1-17, February.
    14. Guo, Wei & Zhang, Xu & Sun, Youhong & Li, Qiang & Liu, Zhao, 2023. "Migration mechanism of pyrolysis oil during oil shale in situ pyrolysis exploitation," Energy, Elsevier, vol. 285(C).
    15. Li, Yujie & Zhai, Cheng & Xu, Jizhao & Sun, Yong & Yu, Xu, 2022. "Feasibility investigation of enhanced coalbed methane recovery by steam injection," Energy, Elsevier, vol. 255(C).
    16. Xu, HengYu & Yu, Hao & Fan, JingCun & Xia, Jun & Liu, He & Wu, HengAn, 2022. "Formation mechanism and structural characteristic of pore-networks in shale kerogen during in-situ conversion process," Energy, Elsevier, vol. 242(C).
    17. Xu, WenLong & Yu, Hao & Micheal, Marembo & Huang, HanWei & Liu, He & Wu, HengAn, 2023. "An integrated model for fracture propagation and production performance of thermal enhanced shale gas recovery," Energy, Elsevier, vol. 263(PA).
    18. Zhang, Hewei & Shen, Jian & Wang, Geoff & Li, Kexin & Fang, Xiaojie & Jing, Qu, 2023. "Differential heat transfer characteristics of coal macerals and their control mechanism: At the mesoscale," Energy, Elsevier, vol. 280(C).
    19. Yang, Wei & Wang, Yihan & Yan, Fazhi & Si, Guangyao & Lin, Baiquan, 2022. "Evolution characteristics of coal microstructure and its influence on methane adsorption capacity under high temperature pyrolysis," Energy, Elsevier, vol. 254(PA).
    20. Yuxuan Zhou & Shugang Li & Yang Bai & Hang Long & Yuchu Cai & Jingfei Zhang, 2023. "Joint Characterization and Fractal Laws of Pore Structure in Low-Rank Coal," Sustainability, MDPI, vol. 15(12), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3256-:d:805200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.