IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v302y2024ics0360544224016815.html
   My bibliography  Save this article

Impact of HPGR operational pressing force and material moisture on energy consumption and crushing product fineness in high-pressure grinding processes

Author

Listed:
  • Saramak, Daniel
  • Leśniak, Katarzyna

Abstract

The paper concerns investigations on potential energy savings and breakage effectiveness, resulting from the application of HPGR device into ore mineral processing circuit. A series of laboratory experiments in HPGR for sulphide copper ore was carried out at four values of pressing force in the press and four levels of moisture of the feed material (according to factorial design 42). Fineness analyses on HPGR products were carried out along with a determination of Bond work indices, specific energy consumption, and throughput for each crushing product. Specific mathematical models for Bond work index, energy consumption, productivity, and breakage intensity measured through the yield of finest particle size fraction and specific comminution ratios in relationship to operational pressing force in HPGR and the feed moisture, were calculated. All models appeared to be highly accurate from the statistical point of view and relationships of both pressing force and the moisture appeared significant. The pressing force has generally demonstrated the highest impact on the investigated effects among all analyzed variables, but it depends on the specific model type.

Suggested Citation

  • Saramak, Daniel & Leśniak, Katarzyna, 2024. "Impact of HPGR operational pressing force and material moisture on energy consumption and crushing product fineness in high-pressure grinding processes," Energy, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224016815
    DOI: 10.1016/j.energy.2024.131908
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224016815
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131908?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Talasetti Santosh & Chinthapudi Eswaraiah & Shivakumar Irappa Angadi & Sunil Kumar Tripathy & Rahul Kumar Soni & Danda Srinivas Rao, 2023. "An Energy Efficient Advanced Comminution Process to Treat Low-Grade Ferrochrome Slag Using High-Pressure Grinding Rolls," Energies, MDPI, vol. 16(7), pages 1-15, March.
    2. Alvarado, Sergio & Algüerno, Jorge & Auracher, Hein & Casali, Aldo, 1998. "Energy–exergy optimization of comminution," Energy, Elsevier, vol. 23(2), pages 153-158.
    3. Numbi, B.P. & Xia, X., 2015. "Systems optimization model for energy management of a parallel HPGR crushing process," Applied Energy, Elsevier, vol. 149(C), pages 133-147.
    4. Jose-Luis, Palacios & Abadias, Alejandro & Valero, Alicia & Valero, Antonio & Reuter, Markus, 2019. "The energy needed to concentrate minerals from common rocks: The case of copper ore," Energy, Elsevier, vol. 181(C), pages 494-503.
    5. Liu, Gang & Wang, Kun & Hao, Xiaochen & Zhang, Zhipeng & Zhao, Yantao & Xu, Qingquan, 2022. "SA-LSTMs: A new advance prediction method of energy consumption in cement raw materials grinding system," Energy, Elsevier, vol. 241(C).
    6. Atmaca, Adem & Kanoglu, Mehmet, 2012. "Reducing energy consumption of a raw mill in cement industry," Energy, Elsevier, vol. 42(1), pages 261-269.
    7. Numbi, B.P. & Zhang, J. & Xia, X., 2014. "Optimal energy management for a jaw crushing process in deep mines," Energy, Elsevier, vol. 68(C), pages 337-348.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wanjiru, Evan M. & Xia, Xiaohua, 2015. "Energy-water optimization model incorporating rooftop water harvesting for lawn irrigation," Applied Energy, Elsevier, vol. 160(C), pages 521-531.
    2. Numbi, B.P. & Malinga, S.J., 2017. "Optimal energy cost and economic analysis of a residential grid-interactive solar PV system- case of eThekwini municipality in South Africa," Applied Energy, Elsevier, vol. 186(P1), pages 28-45.
    3. Khaya Pearlman Shabangu & Manimagalay Chetty & Babatunde Femi Bakare, 2024. "Optimization and Modeling of a Dual-Chamber Microbial Fuel Cell (DCMFC) for Industrial Wastewater Treatment: A Box–Behnken Design Approach," Energies, MDPI, vol. 17(11), pages 1-44, June.
    4. S.R. Patterson & E. Kozan & P. Hyland, 2016. "An integrated model of an open-pit coal mine: improving energy efficiency decisions," International Journal of Production Research, Taylor & Francis Journals, vol. 54(14), pages 4213-4227, July.
    5. Tao, Ming & Yang, Zheng & Zhao, Yan & Wu, Xingyu & Wu, Chengqing, 2024. "Failure characteristics of microwave heat-treated stressed sandstone: Implications for deep rock breakage using TBM cutting," Energy, Elsevier, vol. 292(C).
    6. Mikulčić, Hrvoje & Vujanović, Milan & Ashhab, Moh'd Sami & Duić, Neven, 2014. "Large eddy simulation of a two-phase reacting swirl flow inside a cement cyclone," Energy, Elsevier, vol. 75(C), pages 89-96.
    7. Kagiri, Charles & Wanjiru, Evan M. & Zhang, Lijun & Xia, Xiaohua, 2018. "Optimized response to electricity time-of-use tariff of a compressed natural gas fuelling station," Applied Energy, Elsevier, vol. 222(C), pages 244-256.
    8. Li, Ruilian & Zeng, Deliang & Li, Tingting & Ti, Baozhong & Hu, Yong, 2023. "Real-time prediction of SO2 emission concentration under wide range of variable loads by convolution-LSTM VE-transformer," Energy, Elsevier, vol. 269(C).
    9. Witold Kawalec & Robert Król & Natalia Suchorab, 2020. "Regenerative Belt Conveyor versus Haul Truck-Based Transport: Polish Open-Pit Mines Facing Sustainable Development Challenges," Sustainability, MDPI, vol. 12(21), pages 1-15, November.
    10. Stefenon, Stefano Frizzo & Seman, Laio Oriel & Aquino, Luiza Scapinello & Coelho, Leandro dos Santos, 2023. "Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants," Energy, Elsevier, vol. 274(C).
    11. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    12. Wanjiru, Evan M. & Sichilalu, Sam M. & Xia, Xiaohua, 2017. "Optimal control of heat pump water heater-instantaneous shower using integrated renewable-grid energy systems," Applied Energy, Elsevier, vol. 201(C), pages 332-342.
    13. Luigi Coppola & Denny Coffetti & Elena Crotti, 2018. "Plain and Ultrafine Fly Ashes Mortars for Environmentally Friendly Construction Materials," Sustainability, MDPI, vol. 10(3), pages 1-15, March.
    14. Yin, Qian & Du, Wen-Jing & Ji, Xing-Lin & Cheng, Lin, 2016. "Optimization design and economic analyses of heat recovery exchangers on rotary kilns," Applied Energy, Elsevier, vol. 180(C), pages 743-756.
    15. Ruonan Meng & Qinglin Zhao & Miaomiao Wu & Quanming Long & Mingkai Zhou, 2021. "A Survey and Analysis on Electricity Consumption of Raw Material Mill System in China Cement Industry between 2014 and 2019," Sustainability, MDPI, vol. 13(3), pages 1-11, January.
    16. Ndwali, Kasereka & Njiri, Jackson G. & Wanjiru, Evan M., 2020. "Multi-objective optimal sizing of grid connected photovoltaic batteryless system minimizing the total life cycle cost and the grid energy," Renewable Energy, Elsevier, vol. 148(C), pages 1256-1265.
    17. Xi, Xian & Jiang, Shuguang & Shi, Quanlin, 2023. "Study on the flow and bonding-reinforcement characteristics of composite foam slurry material used to block mine leakage," Energy, Elsevier, vol. 263(PD).
    18. Yin, Qian & Du, Wen-Jing & Cheng, Lin, 2017. "Optimization design of heat recovery systems on rotary kilns using genetic algorithms," Applied Energy, Elsevier, vol. 202(C), pages 153-168.
    19. Liu, Gang & Wang, Kun & Hao, Xiaochen & Zhang, Zhipeng & Zhao, Yantao & Xu, Qingquan, 2022. "SA-LSTMs: A new advance prediction method of energy consumption in cement raw materials grinding system," Energy, Elsevier, vol. 241(C).
    20. Pusnik, Matevz & Al-Mansour, Fouad & Sucic, Boris & Gubina, A.F., 2016. "Gap analysis of industrial energy management systems in Slovenia," Energy, Elsevier, vol. 108(C), pages 41-49.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224016815. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.