IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v197y2020ics036054422030339x.html
   My bibliography  Save this article

Use of exergy efficiency for the optimization of LNG processes with NGL extraction

Author

Listed:
  • Kim, Donghoi
  • Gundersen, Truls

Abstract

In this paper, processes for liquefied natural gas (LNG) production with upstream or integrated natural gas liquids (NGL) removal have been optimized and compared. Since the NGL and LNG production systems use both work and heat to deliver products with different energy quality, it is challenging to measure accurately the thermodynamic efficiency by using conventional energy performance indicators. Thus, two different objective functions, specific energy consumption and exergy efficiency, have been applied in the optimization of these complex systems in order to evaluate the effectiveness of the two performance indicators. The results indicate that use of the exergy-based objective function results in a richer NGL and a larger amount of LNG production with a marginal increase in energy consumption, showing a higher thermodynamic efficiency than the result with the energy-based objective function. Besides, integrated NGL extraction shows a lower thermodynamic performance than upstream removal, indicating that further advanced schemes are required for effective integration of the NGL extraction part in the LNG process.

Suggested Citation

  • Kim, Donghoi & Gundersen, Truls, 2020. "Use of exergy efficiency for the optimization of LNG processes with NGL extraction," Energy, Elsevier, vol. 197(C).
  • Handle: RePEc:eee:energy:v:197:y:2020:i:c:s036054422030339x
    DOI: 10.1016/j.energy.2020.117232
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422030339X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117232?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yoon, Sekwang & Binns, Michael & Park, Sangmin & Kim, Jin-Kuk, 2017. "Development of energy-efficient processes for natural gas liquids recovery," Energy, Elsevier, vol. 128(C), pages 768-775.
    2. Szargut, Jan, 1989. "Chemical exergies of the elements," Applied Energy, Elsevier, vol. 32(4), pages 269-286.
    3. Ghorbani, Bahram & Hamedi, Mohammad-Hossein & Amidpour, Majid & Mehrpooya, Mehdi, 2016. "Cascade refrigeration systems in integrated cryogenic natural gas process (natural gas liquids (NGL), liquefied natural gas (LNG) and nitrogen rejection unit (NRU))," Energy, Elsevier, vol. 115(P1), pages 88-106.
    4. Ghannadzadeh, Ali & Thery-Hetreux, Raphaële & Baudouin, Olivier & Baudet, Philippe & Floquet, Pascal & Joulia, Xavier, 2012. "General methodology for exergy balance in ProSimPlus® process simulator," Energy, Elsevier, vol. 44(1), pages 38-59.
    5. Marmolejo-Correa, Danahe & Gundersen, Truls, 2012. "A comparison of exergy efficiency definitions with focus on low temperature processes," Energy, Elsevier, vol. 44(1), pages 477-489.
    6. Szargut, Jan, 1980. "International progress in second law analysis," Energy, Elsevier, vol. 5(8), pages 709-718.
    7. Lior, Noam & Zhang, Na, 2007. "Energy, exergy, and Second Law performance criteria," Energy, Elsevier, vol. 32(4), pages 281-296.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qyyum, Muhammad Abdul & Naquash, Ahmad & Haider, Junaid & Al-Sobhi, Saad A. & Lee, Moonyong, 2022. "State-of-the-art assessment of natural gas liquids recovery processes: Techno-economic evaluation, policy implications, open issues, and the way forward," Energy, Elsevier, vol. 238(PA).
    2. Islam, Muhammad & Al-Sobhi, Saad A. & Naquash, Ahmad & Qyyum, Muhammad Abdul & Lee, Moonyong, 2024. "Optimal process selection for natural gas liquids recovery: Energy, exergy, economic, and environmental perspectives," Energy, Elsevier, vol. 289(C).
    3. Shazed, Abdur Rahman & Ashraf, Hafsa M. & Katebah, Mary A. & Bouabidi, Zineb & Al-musleh, Easa I., 2021. "Overcoming the energy and environmental issues of LNG plants by using solid oxide fuel cells," Energy, Elsevier, vol. 218(C).
    4. Liu, Zhongxuan & Kim, Donghoi & Gundersen, Truls, 2022. "Optimal recovery of thermal energy in liquid air energy storage," Energy, Elsevier, vol. 240(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, Tuong-Van & Voldsund, Mari & Elmegaard, Brian & Ertesvåg, Ivar Ståle & Kjelstrup, Signe, 2014. "On the definition of exergy efficiencies for petroleum systems: Application to offshore oil and gas processing," Energy, Elsevier, vol. 73(C), pages 264-281.
    2. Gu, Wugen & Huang, Yuqing & Wang, Kan & Zhang, Bingjian & Chen, Qinglin & Hui, Chi-Wai, 2014. "Comparative analysis and evaluation of three crude oil vacuum distillation processes for process selection," Energy, Elsevier, vol. 76(C), pages 559-571.
    3. Petar Sabev Varbanov & Hon Huin Chin & Alexandra-Elena Plesu Popescu & Stanislav Boldyryev, 2020. "Thermodynamics-Based Process Sustainability Evaluation," Energies, MDPI, vol. 13(9), pages 1-28, April.
    4. Khalili-Garakani, Amirhossein & Ivakpour, Javad & Kasiri, Norollah, 2016. "Evolutionary synthesis of optimum light ends recovery unit with exergy analysis application," Applied Energy, Elsevier, vol. 168(C), pages 507-522.
    5. Li, Sheng & Jin, Hongguang & Gao, Lin & Zhang, Xiaosong, 2014. "Exergy analysis and the energy saving mechanism for coal to synthetic/substitute natural gas and power cogeneration system without and with CO2 capture," Applied Energy, Elsevier, vol. 130(C), pages 552-561.
    6. An, Qier & An, Haizhong & Wang, Lang & Huang, Xuan, 2014. "Structural and regional variations of natural resource production in China based on exergy," Energy, Elsevier, vol. 74(C), pages 67-77.
    7. Wiesberg, Igor Lapenda & Brigagão, George Victor & Araújo, Ofélia de Queiroz F. & de Medeiros, José Luiz, 2019. "Carbon dioxide management via exergy-based sustainability assessment: Carbon Capture and Storage versus conversion to methanol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 720-732.
    8. van Donkelaar, Laura H.G. & Mostert, Joost & Zisopoulos, Filippos K. & Boom, Remko M. & van der Goot, Atze-Jan, 2016. "The use of enzymes for beer brewing: Thermodynamic comparison on resource use," Energy, Elsevier, vol. 115(P1), pages 519-527.
    9. Costa, Alexis & Coppitters, Diederik & Dubois, Lionel & Contino, Francesco & Thomas, Diane & De Weireld, Guy, 2024. "Energy, exergy, economic and environmental (4E) analysis of a cryogenic carbon purification unit with membrane for oxyfuel cement plant flue gas," Applied Energy, Elsevier, vol. 357(C).
    10. Zisopoulos, Filippos K. & Moejes, Sanne N. & Rossier-Miranda, Francisco J. & van der Goot, Atze Jan & Boom, Remko M., 2015. "Exergetic comparison of food waste valorization in industrial bread production," Energy, Elsevier, vol. 82(C), pages 640-649.
    11. Bilgen, Selçuk & Kaygusuz, Kamil, 2008. "The calculation of the chemical exergies of coal-based fuels by using the higher heating values," Applied Energy, Elsevier, vol. 85(8), pages 776-785, August.
    12. Islam, Muhammad & Al-Sobhi, Saad A. & Naquash, Ahmad & Qyyum, Muhammad Abdul & Lee, Moonyong, 2024. "Optimal process selection for natural gas liquids recovery: Energy, exergy, economic, and environmental perspectives," Energy, Elsevier, vol. 289(C).
    13. Abedin, Ali Haji & Rosen, Marc A., 2012. "Closed and open thermochemical energy storage: Energy- and exergy-based comparisons," Energy, Elsevier, vol. 41(1), pages 83-92.
    14. Xu, Bowen & Lu, Shilei & Wang, Ran & Zhai, Xue & Fan, Minchao & Jia, Wei & Du, Haibing, 2021. "Exergy analysis and optimization of charging–discharging processes for cascaded latent heat storage system," Energy, Elsevier, vol. 223(C).
    15. Wu, Junnian & Pu, Guangying & Guo, Yan & Lv, Jingwen & Shang, Jiangwei, 2018. "Retrospective and prospective assessment of exergy, life cycle carbon emissions, and water footprint for coking network evolution in China," Applied Energy, Elsevier, vol. 218(C), pages 479-493.
    16. Abedin, Ali Haji & Rosen, Marc A., 2012. "Assessment of a closed thermochemical energy storage using energy and exergy methods," Applied Energy, Elsevier, vol. 93(C), pages 18-23.
    17. Francesco Witte & Mathias Hofmann & Julius Meier & Ilja Tuschy & George Tsatsaronis, 2022. "Generic and Open-Source Exergy Analysis—Extending the Simulation Framework TESPy," Energies, MDPI, vol. 15(11), pages 1-27, June.
    18. Teles dos Santos, Moisés & Park, Song Won, 2013. "Sustainability and biophysics basis of technical and economic processes: A survey of the reconciliation by thermodynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 261-271.
    19. Stanek, Wojciech & Czarnowska, Lucyna, 2018. "Thermo-ecological cost – Szargut's proposal on exergy and ecology connection," Energy, Elsevier, vol. 165(PB), pages 1050-1059.
    20. Bejan, Adrian, 2018. "Thermodynamics today," Energy, Elsevier, vol. 160(C), pages 1208-1219.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:197:y:2020:i:c:s036054422030339x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.